
- •Физические основы подземной гидромеханики
- •1.1. Понятие о моделировании
- •1.2. Модели фильтрационного течения, флюидов и коллекторов
- •1.2.1. Модели фильтрационного течения
- •1.2.2. Модели флюидов
- •1.2.3. Модели коллекторов
- •1.2.4. Характеристики коллекторов
- •2. Дифференциальные уравнения фильтрации
- •2.1. Скорость фильтрации
- •2.2. Общая система уравнений подземной гидромеханики
- •2.3. Закон Дарси (линейный закон фильтрации)
- •2.3.1. Пористая среда
- •2.3.2. Трещинная среда
- •2.4. Уравнения потенциального движения для пористой среды
- •2.6. Начальные и граничные условия
- •2.6.1. Начальные условия
- •2.6.2. Граничные условия
- •2.7. Замыкающие соотношения
- •2.7.1. Зависимость плотности от давления
- •2.7.2. Зависимость вязкости от давления
- •2.7.3. Зависимость пористости от давления
- •2.7.4. Зависимость проницаемости от давления
- •3. Установившаяся потенциальная одномерная фильтрация
- •3.1. Виды одномерных потоков
- •3.1.1. Прямолинейно-параллельный поток
- •3.1.2. Плоскорадиальный поток
- •3.1.3. Радиально-сферический поток
- •3.2. Исследование одномерных течений
- •3.2.1. Задача исследования
- •3.2.2. Общее дифференциальное уравнение
- •3.2.3. Потенциальные функции
- •3.2.4. Анализ основных видов одномерного течения
- •3.2.5. Анализ одномерных потоков при нелинейных законах фильтрации
- •3.3. Фильтрация в неоднородных средах
- •3.4. Приток к несовершенным скважинам
- •3.4.1. Виды и параметры несовершенств скважин
- •3.4.2. Исследования притока жидкости к несовершенной скважине
- •3.5. Влияние радиуса скважины на её производительность
- •4. Нестационарная фильтрация упругой жидкости и газа
- •4.1. Упругая жидкость
- •4.1.1. Понятия об упругом режиме пласта
- •4.1.2. Основные параметры теории упругого режима
- •4.1.3. Уравнение пьезопроводности
- •4.1.4. Приток к скважине в пласте неограниченных размеров
- •4.1.5. Периодически работающая скважина
- •4.1.6. Определение коллекторских свойств пласта по данным исследования скважин нестационарными методами
- •4.2. Неустановившаяся фильтрация газа в пористой среде
- •4.3. Приближенные методы решения задач теории упругого режима
- •4.3.1 Метод последовательной смены стационарных состояний (пссс)
- •Прямолинейно-параллельный неустановившийся
- •Плоскорадиальный неустановившийся
- •4.3.2. Метод а.М.Пирвердяна
- •4.3.3. Метод интегральных соотношений
- •4.3.4. Метод «усреднения»
- •5.Основы теории фильтрации многофазных систем
- •5.1. Связь с проблемой нефтегазоотдачи пластов
- •5.2. Основные характеристики многофазной фильтрации
- •5.3. Исходные уравнения многофазной фильтрации
- •5.4. Потенциальное движение газированной жидкости
- •5.5. Фильтрация водонефтяной смеси и многофазной жидкости
- •5.6. Одномерные модели вытеснения несмешивающихся жидкостей
- •5.6.1. Задача Баклея Леверетта и ее обобщения
- •5.6.2. Задача Рапопорта – Лиса
- •6.Основы фильтрации неньютоновских жидкостей
- •6.1. Реологические модели фильтрующихся жидкостей и нелинейные законы фильтрации
- •6.2. Одномерные задачи фильтрации вязкопластичной жидкости
- •6.3. Образование застойных зон при вытеснении нефти водой
- •7. Установившаяся потенциальная плоская (двухмерная) фильтрация
- •7.1. Метод суперпозиции (потенциалов)
- •7.1.1. Фильтрационный поток от нагнетательной скважины к эксплуатационной
- •7.1.2. Приток к группе скважин с удаленным контуром питания
- •7.1.3. Приток к скважине в пласте с прямолинейным контуром питания
- •7.1.4. Приток к скважине, расположенной вблизи непроницаемой прямолинейной границы
- •7.1.5. Приток к скважине в пласте с произвольным контуром питания
- •7.1.6. Приток к бесконечным цепочкам и кольцевым батареям скважин
- •7.2. Метод эквивалентных фильтрационных сопротивлений (метод Борисова)
- •7.3. Интерференция несовершенных скважин.
- •7.3.1. Взаимодействие скважин в анизотропном пласте
- •7.3.2. Взаимодействие скважин при нестационарных процессах
- •8. Основы численного моделирования
- •8.1. Сущность математического моделирования
- •8.2. Основные проблемы гидродинамического моделирования
- •Глава 1
- •Глава 2,3
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •5.6.1. Задача Баклея Леверетта и ее обобщения 105
- •5.6.2. Задача Рапопорта – Лиса 107
4.2. Неустановившаяся фильтрация газа в пористой среде
Лейбензон Л.С. получил дифференциальное уравнение для определения давления в пласте при неустановившемся движении в нем идеального газа.
Для получения требуемого уравнения используем изотермическое приближение и, следовательно, используем уравнение состояния в виде
. (4.31)
Потенциальная функция, как уже отмечалось ранее, имеет вид
.
(4.31)
Обозначив р2=Р и проделав преобразования общего уравнения нестационарной фильтрации, получим уравнение Лейбензона:
.
(4.32)
По внешнему виду уравнение (4.32) не отличается от уравнения пьезопроводности (4.11), но множитель перед лапласианом переменен. В связи с этим уравнение (4.32) нелинейно в отличие от линейного уравнения пьезопроводности упругой жидкости и аналитически решается приближенно.
Для получения приближенного решения используется метод линеаризации, а именно, переменное давление р заменяется на некоторое постоянное : Лейбензон предложил замену на рк (начальное давление в пласте); Чарный – на рср=рmin+0,7(pmax-pmin), где pmax и pmin – максимальное и минимальное давление в пласте за расчетный период.
При
указанных допущениях решение будет
иметь такой же вид, что и в случае упругой
жидкости, но при этом в данных решениях
давлению р
будет соответствовать Р=р2,
κ – κ/=
,
–
.
Таким образом, изменение давления при нестационарной фильтрации газа описывается соотношением
.
(4.33)
При малых значениях r2/(4æ/t) можно заменить интегрально-показательную функцию логарифмической
. (4.34)
Формулы (4.33),(4.34) определяют при фиксированных значениях времени распределение давления вокруг газовой скважины, работающей с постоянным дебитом с момента t=0. Депрессионные кривые идентичны кривым при установившейся фильтрации – имеют максимальную кривизну вблизи скважины (рис.4.9а). Если задать значение r, то можно найти изменение давления в данной точке с течением времени (рис.4.9b). В частности, можно найти давление на забое (при r=rc) после начала работы скважины.
a b
Рис.
4.9. Пьезометрические кривые при
неустановившемся притоке газа к скважине
в разные моменты времени (а) и изменение
давления с течением времени в фиксированных
точках пласта (b)
Уравнение (4.39) используется для расчета коллекторских параметров газовых пластов методом обработки кривой восстановления давления. Принцип расчета такой же, что и в случае нефтяных скважин, но для получения линейной зависимости по оси ординат надо откладывать не депрессию, а разность квадратов пластового и забойного давлений.
4.3. Приближенные методы решения задач теории упругого режима
Аналитические решения большинства задач теории упругого режима представляются громоздкими формулами в виде бесконечного медленно сходящегося ряда или несобственного интеграла, содержащего специальные функции.
В связи с этим были предприняты поиски приближенных эффективных решений задач неустановившейся фильтрации упругой жидкости в упругой пористой среде [1].