Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ферменты.docx
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
166.71 Кб
Скачать

Кислая фосфатаза

Кислая фосфатаза содержится почти во всех органах и тканях человека, особенно в клетках крови, предстательной железе, печени, почках, костях. Фермент обнаружен также в женском молоке. Активность кислой фосфатазы в предстательной железе в 100 раз выше, чем в других тканях.

У мужчин половину содержащейся в сыворотке кислой фосфатазы вы­рабатывает предстательная железа, остальную часть — печень и разрушающиеся тромбоциты и эритроциты. У женщин фермент вырабатывается печенью, эритроцитами и тромбоцитами. Кислая фосфатаза не является гомогенным ферментом. Большинство тканей содержит два или более изоферментов, отличающихся по своим свойствам.

Определение активности кислой фосфатазы в клинической практике обычно проводит­ся для диагностики рака предстательной железы. Активность кислой фосфатазы повышается при массивном разрушении тромбоцитов (тробоцитопения, тромбоэмболии и др.), гемолитической болезни, прогрессирующей болез­ни Педжета, метастатическом поражении костей, миеломной болезни (не всегда), болезни Гоше и Нимана—Пика.

Гипотезы фермент-субстратного взаимодействия.

Образование фермент-субстратного комплекса протекает очень быстро на I стадии ферментативной реакции. Субстрат присоединяется к якорному участку активного центра. Э. Фишер(1894г) пораженный этим свойством ферментов, предложил для объяснения специфичности взаимодействия фермента и субстрата модель «ключа и замка». Согласно этой модели у фермента имеется окончательно сформированный активный центр еще задолго до взаимодействия с субстратом. Эта модель объясняла абсолютную специфичность фермента и не могла объяснить относительной.

Жесткие рамки взаимоотношений «ключа» и «замка» были дополнены моделью индуцированного взаимодействия, предложенной Д. Кошландом, моделью «рука-перчатка». Согласно которой, окончательное формирование активного центра фермента происходит в момент взаимодействия с субстратом, т.е. при связывании субстрата с якорным участком активного центра происходит изменение конформации каталитического участка активного центра, обеспечивающее его комплементарность поверхности субстрата. Данная модель была подтверждена при помощи метода рентгеноструктурного анализа, позволившего построить пространственную модель фермента. Первым ферментом, пространственная структура которого была исследована таким методом, был лизоцим.

Коферменты

Во многих случаях для активации ферментов необходимы небелковые низкомолекулярные соединения. Небелковые компоненты в составе ферментов называют коферментами, а сам белок – апоферментом. Кофермент с апоферментом образуют холофермент.

Коферменты – это органические вещества, предшественниками которых являются витамины.

Есть коферменты которые прочно (ковалентно) связаны с апоферментом (белком), т.е. представляют собой простетическую группу сложного белка (холофермента).

Металлоферменты (кофермент – металл Са2+ , Мg2+, Fе2+, Сu2+, Мn2+,Sе и др.).

Например: для активации свертывания крови требуется Са2+ ; Токсический эффект тяжелых металлов.

Каждый кофермент имеет определенную структуру, что делает его специфичным для определенного типа реакций. Кофермент во время реакции изменяется, он легко отделяется от белка. Общий принцип реакции, в которой участвует кофермент, состоит в том, что часть молекулы субстрата или целая молекула субстрата переносится на кофермент. Затем перенесенная группа вступает в реакцию с новым субстратом. При этом кофермент возвращается в исходное состояние. Переносимые группы могут быть простыми молекулами (Н2, СО2) или остатками более сложных соединений.

Коферменты – производные витаминов (ТПФ, КоА, НАД, НАДФ, ФАД, ФМН, пиридоксальфосфат, ТГФК, кобаламины, карбоксибиотин – схема строения молекул, биологическая роль.

Особо важное значение имеют коферменты – производные водорастворимых витаминов, так как протекание реакций, катализируемых ферментами с такими коферментами, зависит от поступления витаминов с пищей.

Коферменты, содержащие тиамин, образуются путем фосфорилирования витамина В1. Хорошо установлена роль тиаминдифосфата, известного также под названием тиаминпирофосфат (ТПФ), или кокарбоксилаза. Он участвует в реакциях простого окислительного декарбоксилирования альфа-кетокислот, входит в состав транскетолазы (пентозофосфатный путь окисления глюкозы).

Коферменты, содержащие пантотеновую кислоту (витамин В5). Пантотеновая кислота входит в состав кофермента А (КоА-SН). Этот кофермент участвует в реакциях переноса остатка кислоты (ацила). Наиболее значим в клетках остаток уксусной кислоты – ацетил. Ацетил – кофермент А (СН3-СО~S-КоА) – это сединение, которое объединяет между собой обмен разных веществ в клетке.

Коферменты, содержащие витамин РР (никотинамид, витамин В3). Витамин РР входит в состав НАД и НАДФ, которые входят в состав дегидрогеназ, катализирующих окислительно-восстановительные реакции. Они выполняют роль промежуточных акцепторов электронов и протонов.

Коферменты, содержащие рибофлавин. Они образуются путем фосфорилирования или аденилирования витамина В2. Различают 2 кофермента, содержащих рибофлавин – ФМН и ФАД – они участвуют в окислительно-восстановительных реакциях. Коферменты образуются путем фосфорилирования двух производных пиридина – пиридоксаля и пиридоксамина. Ведущим коферментом является пиридоксальфосфат, участвующий в реакциях трансаминирования, декарбоксилирования и др.

Коферменты, содержащие витамин Вс (фолиевая кислота), в своем составе витамин Вс содержит еще один витамин – парааминобензойную кислоту, которая соединяется с птеридином и глутаминовой кислотой. Коферментной формой является тетрагидрофолиевая кислота, которая участвует в реакциях переноса фрагментов органических молекул, содержащих один углеродный атом, необходимых для синтеза нуклеотидов, аминокислот, липидов.

Коферменты, содержащие витамин В12, который входит в состав коферментов – метилкобаламин и 5′-дезоксиаденозилкобаламин. Метилкобаламин участвует в реакциях переноса метильных групп, которые становятся важными источниками одноуглеродных фрагментов, а 5′-дезоксиаденозилкобаламин участвует в реакциях изомеризации.

Биотин (витамин Н) образует активную форму – карбоксибиотин, который участвует в реакциях карбоксилирования и транскарбоксилирования