
- •Рецензенти:
- •76019, Івано-Франківськ, вул. Карпатська, 15 Івано-Франківський національний технічний університет нафти і газу
- •§ 2 Основні поняття теоретичної механіки
- •1 Статика твердого тіла
- •§ 3 Предмет статики твердого тіла
- •§ 4 Основні поняття статики
- •§ 5 В’язі та їх реакції
- •§ 6 Вихідні положення (аксіоми) статики
- •1. Аксіома зрівноваження двох сил.
- •2. Аксіома приєднання і виключення зрівноваженої системи сил.
- •3. Аксіома дії і протидії (ііі-ій закон Ньютона).
- •4. Аксіома накладання додаткових в’язей.
- •5. Аксіома паралелограма.
- •1.1 Система збіжних сил
- •§ 7 Зведення системи збіжних сил до канонічного вигляду
- •1. Геометричний спосіб визначення рівнодійної.
- •2. Аналітичний спосіб визначення рівнодійної.
- •§ 8 Умови і рівняння рівноваги системи збіжних сил
- •1. Геометрична умова рівноваги.
- •2. Аналітичні умови рівноваги. Рівняння рівноваги.
- •§ 9 Алгоритм розв’язання задач на рівновагу
- •Питання для самоконтролю
- •1.2 Теорія моменту сил
- •§ 10 Момент сили відносно точки
- •§ 11 Момент сили відносно осі
- •§ 12 Залежність між моментом сили відносно точки і моментом сили відносно осі, яка проходить через цю точку
- •§ 13 Аналітичне визначення моменту сили відносно довільної точки
- •§ 14 Теорема Варіньйона
- •Питання для самоконтролю
- •1.3 Довільна система сил
- •§ 15 Головний вектор і головний момент системи сил
- •1. Геометричний спосіб
- •2. Аналітичний спосіб
- •§ 16 Пара сил і її момент
- •§ 17 Еквівалентність пар сил
- •§ 18 Додавання пар сил
- •§ 19 Лема про паралельний перенос сили
- •§ 20 Зведення довільної системи сил до заданого центра
- •§ 21 Окремі випадки зведення довільної системи сил
- •§ 22 Інваріанти довільної системи сил
- •§ 23 Аналітичні умови рівноваги просторової системи сил
- •§ 24 Аналітичні умови рівноваги плоскої системи сил
- •§ 25 Статично означені і статично неозначені задачі
- •§ 26 Рівновага системи тіл
- •Питання для самоконтролю
- •1.4 Деякі спеціальні питання статики
- •§ 27 Тертя ковзання
- •§ 28 Конус тертя. Область рівноваги
- •§ 29 Тертя кочення
- •§ 30 Поняття про ферми
- •Питання для самоконтролю
- •1.5 Система паралельних сил. Центр ваги твердого тіла
- •§ 31 Зведення системи паралельних сил до канонічного вигляду
- •§ 32 Центр ваги твердого тіла
- •1. Центр ваги однорідного тіла (центр ваги об’єму)
- •2. Центр ваги площі однорідного плоского тіла (центр ваги площі)
- •3. Центр ваги однорідного лінійного тіла (центр ваги лінії)
- •§ 33 Центр ваги деяких простих геометричних фігур
- •§ 34 Способи визначення положення центра ваги тіла
- •Питання для самоконтролю
- •2 Кінематика
- •§ 35 Предмет кінематики
- •2.1 Кінематика точки
- •§ 36 Векторний спосіб вивчення руху точки
- •§ 37 Координатний спосіб вивчення руху точки
- •§ 38 Швидкість і пришвидшення точки в полярних координатах
- •§ 39 Натуральна система координат
- •§ 40 Натуральний спосіб вивчення руху точки
- •§ 41 Класифікація руху точки за її пришвидшеннями
- •Питання для самоконтролю
- •2.2 Кінематика твердого тіла
- •§ 42 Поступальний рух твердого тіла
- •§ 43 Обертання твердого тіла навколо нерухомої осі
- •§ 43.1 Рівняння обертання тіла навколо нерухомої осі
- •§ 43.2 Рівняння рівномірного і рівнозмінного обертання
- •§ 43.3 Швидкість і пришвидшення точки тіла, яке обертається навколо нерухомої осі
- •§ 43.4 Вектор кутової швидкості
- •§ 43.5 Векторні вирази швидкості, доцентрового і обертального пришвидшень точки тіла при обертальному русі
- •Питання для самоконтролю
- •2.1 Кінематика складного руху точки
- •§ 44 Складний рух точки
- •§ 44.1 Основні поняття і визначення
- •§ 44.2 Теорема про складання швидкостей
- •§ 44.3 Теорема про складання пришвидшень (Теорема Коріоліса)
- •§ 44.4 Коріолісове пришвидшення і його визначення
- •Питання для самоконтролю
- •2.4 Кінематика складного руху твердого тіла
- •§ 45 Складний рух твердого тіла
- •§ 46 Плоскопаралельний (плоский) рух твердого тіла
- •§ 46.1 Основні поняття і визначення
- •§ 46.2 Рівняння руху плоскої фігури
- •§ 46.3 Рівняння руху точки плоскої фігури
- •§ 46.4 Теорема про швидкості точок плоскої фігури та її наслідок
- •§ 46.5 Миттєвий центр швидкостей
- •§ 46.6 Способи визначення положення миттєвого центра швидкостей
- •§ 46.7 Теорема про пришвидшення точок плоскої фігури
- •§ 46.8 Миттєвий центр пришвидшень
- •Питання для самоконтролю
- •§ 47 Обертання твердого тіла навколо нерухомої точки
- •§ 47.1 Кути Ейлера. Рівняння обертання твердого тіла навколо нерухомої точки
- •§ 47.2 Теорема Ейлера-Даламбера
- •§ 47.3 Кутова швидкість і кутове пришвидшення тіла, що обертається навколо нерухомої точки
- •§ 47.4 Швидкість точок твердого тіла, яке обертається навколо нерухомої точки
- •§ 47.5 Пришвидшення точок твердого тіла, яке обертається навколо нерухомої точки
- •Питання для самоконтролю
- •§ 48 Рух вільного твердого тіла
- •Питання для самоконтролю
- •§ 49 Синтез рухів
- •§ 49.1 Складання поступальних рухів твердого тіла
- •§ 49.2 Складання поступального і обертального рухів твердого тіла
- •§ 49.3 Складання обертань навколо осей, що перетинаються
- •§ 49.4 Складання обертань навколо паралельних осей
- •Питання для самоконтролю
- •§ 50 Аналогії між кінематикою і статикою
- •1 Проекція вектора на площину
- •2 Проекція вектора на вісь
- •3 Приклади розв’язування задач на рівновагу тіла
- •4 Додавання двох паралельних сил
- •5 Доведення теореми про еквівалентність пар сил
- •6 Найменше значення головного моменту системи сил
- •Список використаної літератури, деяких підручників і навчальних посібників з теоретичної механіки
- •Предметний покажчик
§ 43.4 Вектор кутової швидкості
Для спрощення майбутніх теоретичних викладок зробимо одне припущення. Припустимо, що кутова швидкість – це вектор.
Вектором кутової швидкості твердого тіла, яке обер-тається навколо нерухомої осі, будемо називати вектор, який чисельно дорівнює модулю алгебраїчної кутової швидкості і напрямлений вдовж осі обертання в бік, звідки обертання тіла видно проти руху годинникової стрілки (рис. 104).
В
Рис. 104
є ковзним вектором, бо його можна
відкласти з будь-якої точки осі.
Задання вектора кутової швидкості повністю визначає обертальний рух тіла, адже він вказує на положення осі обертання, напрям обертання і швидкість обертання. Сам вектор швидкості можна виразити так:
(2.50)
де – одиничний вектор осі обертання.
Оскільки кутове пришвидшення дорівнює першій похідній за часом від кутової швидкості, то:
перша похідна за часом від вектора кутової швидкості визначає вектор кутового пришвидшення
(2.51)
або,
використовуючи формулу (2.50) і знаючи,
що
,
матимемо
(2.52)
З формули (2.52) випливає, що вектор кутового пришвидшення тіла, що обертається навколо нерухомої осі, також напрямлений по осі обертання, а можливі випадки взаємного розміщення векторів і показані на рис. 105).
Рис. 105
§ 43.5 Векторні вирази швидкості, доцентрового і обертального пришвидшень точки тіла при обертальному русі
Розглянемо тверде тіло, що обертається навколо нерухомої осі (рис. 106), на якому також зображено:
– траєкторію довільної точки тіла;
– вектор її швидкості , дотичний до траєкторії і напрямлений в бік обертання;
– вектор кутової швидкості тіла з довільної її точки в бік, звідки обертання тіла видно проти руху годинникової стрілки;
– радіус-вектор точки . Початок його знаходиться в центрі .
З
Рис. 106
(бо вектор швидкості перпендикулярний
до радіуса обертання) і
(тому що вектор швидкості знаходиться
в площині траєкторії, яка в даному
випадку перпендикулярна до осі обертання).
Отже, вектор
є перпендикулярним до площини
,
тобто до площини, яка проходить через
вектори
і
.
Величина вектор швидкості визначається
за формулою (2.44)
(а)
З
маємо
.
Підставивши значення у формулу (а), отримаємо
.
Отже,
модуль швидкості дорівнює модулю
векторного добутку
і
,
який можна записати двояко:
або
.
З визначення векторного добутку випливає,
що тільки добуток
буде визначати вектор, який співпадає
за напрямом з вектором швидкості
,
тобто
,
або
.
(2.53)
Вектор швидкості точки тіла, яке обертається навколо нерухомої осі, дорівнює векторному добутку кутової швидкості на радіус-вектор точки, початок якого знаходиться в довільному центрі на осі.
Формулу (2.53) часто називають формулою Ейлера. Зауважимо, що за часів Л. Ейлера (1707-1783) поняття векторного добутку ще не існувало, але ним були отримані формули
(2.54)
які є фактично проекціями векторного добутку (2.53) на декартові осі координат.
Оскільки
то враховуючи формулу (2.53), отримаємо формулу, яка визначає значення першої похідної за часом від радіуса-вектора, який змінюється тільки за напрямом
.
(2.55)
Взявши першу похідну за часом від формули (2.53)
і
враховуючи, що
отримаємо
Легко
показати (пропонується кожному читачеві
це зробити самостійно), що векторний
добуток
визначає вектор обертального
(тангенціального) пришвидшення, а
векторний добуток
визначає вектор доцентрового (нормального)
пришвидшення, тобто
,
(2.56)
.
(2.57)
Формули (2.53), (2.56), (2.57) є векторними виразами швидкості, тангенціального (обертального) і нормального (до-центрового) пришвидшень.