
- •Руководство к лабораторным и практическим занятиям по медицинской и биологической физике
- •Часть II
- •1 Курса ________группы
- •200____ / 200____ Учебный год
- •Занятие № 19
- •Теоретические вопросы:
- •Литература:
- •Краткое содержание теории
- •Значение биологических мембран в процессе жизнедеятельности клетки
- •М олекулярная организация и модели клеточных мембран
- •Физические свойства и параметры мембран
- •Значение изучения транспорта веществ через клеточные мембраны. Классификация мембранного транспорта
- •Пассивный транспорт веществ и его разновидности. Математическое описание пассивного транспорта
- •Активный транспорт ионов. Механизм активного транспорта вещества на примере натрий-калиевого насоса.
- •Cпособы проникновения веществ через биологические мембраны.
- •Порядок выполнения лабораторной работы Краткое описание колориметрического метода
- •Подготовка мкмф-1 к работе
- •Выполнение измерений
- •Завершение работы с мкмф-1
- •Результаты
- •Занятие № 20
- •Теоретические вопросы:
- •Краткое содержание теории
- •История открытия биопотенциалов. Гипотеза Бернштейна.
- •Мембранно-ионная теория генерации биопотенциалов клеткой и основные опыты, её подтверждающие
- •Потенциал покоя. Уравнение Нернста. Уравнение Гольдмана-Ходжкина-Катца
- •Механизм генерации потенциала действия
- •Распространение потенциала действия по миелиновым и безмиелиновым нервным волокнам
- •II. Практическая часть
- •Отчет по лабораторной работе «Компьютерное моделирование электрогенеза в клетках»
- •Теоретические вопросы:
- •Литература:
- •Самостоятельно решить задачи:
- •Краткое содержание теории
- •Выполнение измерений
- •Резонанс в цепи переменного тока
- •Описание установки
- •Содержание работы
- •Занятие № 23
- •Теоретические вопросы:
- •Литература
- •Краткое содержание теории
- •Порядок выполнения лабораторной работы а . Постоянный ток. Описание установки
- •Содержание работы
- •Б. Переменный ток. Описание установки
- •Содержание работы
- •Занятие № 24
- •Теоретические вопросы:
- •Литература
- •Описание установки:
- •Назначение органов управления и подготовка осциллографа с1-72 к работе
- •Порядок выполнения лабораторной работы
- •Занятие № 25
- •Теоретические вопросы:
- •Литература
- •Описание установки:
- •Порядок выполнения лабораторной работы
- •Занятие № 26
- •Теоретические вопросы:
- •Литература
- •Краткое содержание теории
- •Датчики температуры тела
- •Датчики параметров системы дыхания
- •Датчики параметров сердечно-сосудистой системы
- •Описание установки
- •Занятие № 27
- •Теоретические вопросы:
- •Литература
- •Порядок выполнения лабораторной работы
- •1. Снятие амплитудной характеристики усилителя
- •Теоретические вопросы:
- •Литература
- •Занятие № 29
- •Теоретические вопросы:
- •Литература
- •Практически выполнить:
- •Порядок выполнения лабораторной работы
- •Определение увеличения микроскопа
- •Определение разрешающей способности микроскопа
- •Занятие № 30
- •Теоретические вопросы:
- •Литература
- •Описание лабораторной установки
- •Порядок выполнения работы
- •I часть
- •II часть
- •Контрольные вопросы:
- •Занятие № 31
- •Теоретические вопросы:
- •Литература
- •Порядок выполнения лабораторной работы
- •Теоретические вопросы:
- •Литература:
- •Краткое содержание теории
- •Действие лазерного излучения на биологические ткани, фотодинамическая терапия
- •Порядок выполнения лабораторной работы Описание установки
- •Отсчет по микрометрическому винту
- •Выполнение измерений
- •I. Градуировка спектроскопа
- •II. Определение длин волн спектра поглощения раствора kMnO4.
- •Результаты
- •Контрольные вопросы:
- •Занятие № 33
- •Теоретические вопросы:
- •Магнитное поле и его основные характеристики.
- •Магнитные моменты электрона – орбитальный и спиновой. Орбитальное магнитомеханическое отношение для электрона.
- •Магнитные свойства вещества, намагниченность. Парамагнетики, диамагнетики и ферромагнетики.
- •Литература
- •Краткое содержание теории
- •Магнитные моменты электрона – орбитальный и спиновой. Орбитальное магнитомеханическое отношение для электрона.
- •4. Магнитные свойства вещества, намагниченность. Парамагнетики, диамагнетики и ферромагнетики
- •Магнитные свойства биологических тканей. Воздействие магнитного поля на биологические объекты
- •Занятие № 34
- •Теоретические вопросы:
- •Литература
- •Теоретические вопросы:
- •Литература:
- •Самостоятельно решить задачи:
- •Методы получения радионуклидов
- •Порядок выполнения лабораторной работы Описание установки
- •Выполнение измерений
- •Занятие № 36
- •Теоретические вопросы:
- •Литература
- •№№ 7.20, 7.21, 7.22, 7.23. (А.Н.Ремизов и др. Сборник задач по медицинской и биологической физике. –м.: Высшая школа, -1987)
- •Приложение 1. Перечень вопросов к экзамену по медицинской и биологической физике
- •Руководство к лабораторным и практическим занятиям по медицинской и биологической физике
- •Часть II
Потенциал покоя. Уравнение Нернста. Уравнение Гольдмана-Ходжкина-Катца
Потенциал покоя (ПП, мембранный потенциал покоя). ПП называется разность потенциалов между внутренней и наружной сторонами клеточной мембраны, возникающей в состоянии покоя клетки. У живых клеток в покое между внутренним содержимым клетки и наружным раствором существует отрицательная разность потенциалов (ПП) порядка 60—90 мВ, которая локализована на поверхностной мембране. Внутренняя сторона мембраны заряжена электроотрицательно по отношению к наружной. ПП обусловлен избирательной проницаемостью покоящейся мембраны для ионов К+ (Ю. Бернштейн, 1902, 1912. А. Ходжкин и Б. Катц, 1947).
Предположим, что клетку с мембраной, проницаемой только для ионов калия, поместили в электролит, где их концентрация меньше, чем внутри клетки. Сразу после соприкосновения мембраны с раствором ионы калия начнут выходить из клетки наружу, как выходит газ из надутого шара. Но каждый ион несет с собой положительный электрический заряд, и чем больше ионов калия покинет клетку, тем более электроотрицательным станет ее содержимое. Поэтому на каждый ион калия, выходящий из клетки, будет действовать электрическая сила, препятствующая его движению наружу. В конце концов, установится равновесие, при котором электрическая сила, действующая на ион калия в канале мембраны, будет равна силе, обусловленной различием концентраций ионов калия внутри и вне клетки. Очевидно, что в результате такого равновесия между внутренним и наружным растворами появится разность потенциалов. При этом, если за нуль потенциала принять потенциал внешнего раствора, то потенциал внутри клетки будет отрицательным. Эта разность потенциалов – самое простое из наблюдаемых биоэлектрических явлений – носит название «потенциал покоя» клетки. В первом приближении величину ПП можно рассчитать с помощью формулы Нернста:
,
где - концентрация ионов калия внутри клетки, - концентрация ионов калия снаружи клетки.
Подставляя численные значения в формулу Нернста, получим значение ПП порядка -87 мВ, что весьма близко к экспериментально измеренному значению ПП. Дальнейшие исследования показали, что вклад в формирование ПП вносят не только ионы калия, но и ионы натрия и хлора.
Концентрация К+ в протоплазме примерно в 50 раз выше, чем во внеклеточной жидкости, поэтому, диффундируя из клетки, ионы выносят на наружную сторону мембраны положительные заряды, при этом внутренняя сторона мембраны, практически не проницаемой для крупных органических анионов, приобретает отрицательный потенциал. Поскольку проницаемость мембраны в покое для Na+ примерно в 100 раз ниже, чем для К+, диффузия натрия из внеклеточной жидкости (где он является основным катионом) в протоплазму мала и лишь незначительно снижает ПП, обусловленный ионами К+.
В скелетных мышечных волокнах в возникновении потенциала покоя важную роль играют также ионы Cl-, диффундирующие внутрь клетки. Следствием ПП является ток покоя, регистрируемый между поврежденным и интактным участками нерва или мышцы при приложении отводящих электродов. Мембраны нервных и мышечных клеток (волокон) способны изменять ионную проницаемость в ответ на сдвиги мембранного потенциала. При увеличении ПП (гиперполяризация мембраны) проницаемость поверхностных клеточных мембран для Na+ и К+ падает, а при уменьшении ПП (деполяризация) она возрастает, причём скорость изменений проницаемости для Na+ значительно превышает скорость увеличения проницаемости мембраны для К+. Более точные значения для ПП вычисляются по формуле Гольдмана-Ходжкина-Катца (ГХК), которая учитывает проницаемость КМ в покое не только для ионов калия, но и для ионов натрия и хлора:
,
где PK, PNa, PCl – проницаемость КМ для ионов калия, натрия и хлора, выражения […]i и […]0 обозначают концентрации соответствующих молекул внутри и вне клетки.
В качестве примера вычислим величину ПП для гигантского аксона кальмара. Концентрации ионов внутри и вне аксона приведены ниже (см. таблицу).
-
Ион
Концентрация (моль на 1 кг воды)
Внутри (i)
Вне (0)
Na+
70
420
K+
360
10
Cl-
160
500
В состоянии покоя при физиологических условиях соотношение коэффициентов проницаемости равно:
Рк : РNa : PCl = 1 : 0,04 : 0,45.
Диффузия ионов калия и хлора идет через КМ в обе стороны. Натрий за счет механизма пассивного транспорта проникает внутрь аксона и за счет активного транспорта выносится из клетки. Следовательно, основной вклад в формирование ПП вносят ионы калия и хлора. Подставив численные значения проницаемостей и концентраций для ионов калия хлора в формулу Гольдмана-Ходжкина-Катца для температуры t=300 C вычислим:
Значение ПП, вычисленное по формуле Нернста, равно:
Формула Нернста дает несколько заниженное значение потенциала покоя, а формула ГХК приводит к более реалистичным значениям ПП, измеренным экспериментально на крупных клетках.
Следует также отметить, что ни формула Нернста, ни формула ГХК не учитывают механизма активного транспорта.
Формула Томаса для ПП учитывает работу электрогенных ионных Na-K- насосов и имеет вид:
,
где m – отношение количества ионов натрия к количеству ионов калия, переносимых натрий-калиевым насосом через КМ. Наиболее распространенный режим работы Na+-K+-АТФ-азы наблюдается при m=3/2. В уравнении Томаса отсутствуют члены PCl[Cl-], так как нет активного транспорта для ионов хлора через КМ.
Численное значение ПП по формуле Томаса равно:
.
Коэффициент m, применяемый в уравнении Томаса, усиливает вклад градиента концентрации ионов калия в формирование ПП. Поэтому ПП, рассчитанный по формуле Томаса, по абсолютному значению меньше ПП, рассчитанного по формуле ГХК. Значение ПП, полученное с помощью формулы Томаса, хорошо совпадает со значениями ПП, измеренными экспериментально на мелких клетках.