- •Н. Г. Моисеев математическая логика и теория алгоритмов
- •Оглавление
- •Предисловие
- •Введение
- •Техника безопасности при выполнении лабораторных работ
- •1. Общие требования безопасности
- •2. Требования безопасности перед началом работы
- •3. Требования безопасности во время работы
- •4. Требования безопасности в аварийной обстановке
- •5. Требования безопасности по окончании работы
- •6. Ответственность
- •Лабораторная работа № 1 алгебра высказываний и логические операции над ними
- •1.1. Теоретическая часть
- •1.1.1. Высказывания и операции над ними. Понятие высказывания
- •1.1.2. Логические операции над высказываниями
- •1.2. Задания к выполнению работы
- •1.3. Контрольные вопросы
- •2.1.1. Формулы алгебры высказываний
- •2.1.1. Равносильные формулы алгебры высказываний
- •I. Основные равносильности:
- •II. Равносильности, выражающие одни логические операции через другие:
- •III. Равносильности, выражающие основные законы алгебры логики:
- •2.2. Задания к выполнению работы
- •2.3. Контрольные вопросы
- •Учебно-методическое обеспечение
- •Лабораторная работа № 3 функции алгебры логики. Совершенные нормальные формы
- •3.1. Теоретическая часть
- •3.1.1. Функции алгебры логики
- •3.1.2. Представление произвольной функции алгебры логики в виде формулы алгебры логики
- •3.1.3. Закон двойственности
- •3.1.4. Дизъюнктивная нормальная форма (днф) и совершенная дизъюнктивная нормальная форма (сднф)
- •3.1.5. Конъюнктивная нормальная форма (кнф) и совершенная конъюнктивная нормальная форма (скнф)
- •3.1.6. Проблема разрешимости
- •3.2. Задания к выполнению работы
- •Сднф и скнф операции конъюнкции
- •3.3. Контрольные вопросы
- •4.1.1. Основные понятия релейно-контакных схем
- •4.1.2. Реализация с помощью релейно-контакных схем основных логических операций
- •4.2. Задания к выполнению работы
- •4.3. Контрольные вопросы
- •5.2. Задания к выполнению работы
- •5.3. Контрольные вопросы
- •Учебно-методическое обеспечение
- •Лабораторная работа № 6 построение доказательств в логике высказываний
- •6.1. Теоретическая часть
- •6.1.1. Основные понятия и определения, используемые при построении доказательств в логике высказываний
- •6.1.2. Аксиоматический метод доказательства логических выражений
- •6.1.3. Конструктивный метод доказательства логических выражений
- •Метод доказательства логических выражений
- •6.1.4. Принцип резолюций
- •6.1.5. Метод Вонга
- •6.1.6. Метод натурального исчисления
- •6.2. Задания к выполнению работы
- •6.3. Контрольные вопросы
- •7.1.1. Составление легенд на основе клауз
- •7.1.2. Составление клауз на основе легенд
- •7.2. Задания к выполнению работы
- •7.3. Контрольные вопросы
- •8.1.1. Формулы исчисления высказываний
- •8.1.2. Определение доказуемой формулы
- •1. Система аксиом исчисления высказываний
- •2. Правила вывода
- •1. Правило подстановки
- •2. Правило заключения.
- •3. Определение доказуемой формулы
- •8.1.3. Производные правила вывода
- •8.1.4. Понятие выводимости формулы из совокупности формул
- •8.1.5. Понятие вывода
- •8.1.6. Правила выводимости
- •13. Правило исключения третьего в доказуемых формулах
- •8.1.7. Связь между алгеброй высказываний и исчислением высказываний
- •Теоремы, устанавливающие связь между алгеброй высказываний и исчислением высказываний
- •8.2. Задания к выполнению работы
- •8.3. Контрольные вопросы
- •9.1.1. Логические операции над предикатами
- •9.1.2. Кванторные операции
- •9.1.3. Понятие формулы логики предикатов
- •9.1.4. Значение формулы логики предикатов
- •9.1.5. Равносильные формулы логики предикатов
- •9.1.6. Предваренная нормальная форма
- •9.1.7. Общезначимость и выполнимость формул
- •9.2. Задания к выполнению работы
- •9.3. Контрольные вопросы
- •Учебно-методическое обеспечение
- •Лабораторная работа № 10 алгоритмы и их применение
- •10.1. Теоретическая часть
- •10.1.1. Характерные черты алгоритма и основные требования к алгоритмическим процедурам
- •10.1.2. Классификация алгоритмических моделей
- •10.1.3. Машины Тьюринга
- •Тьюрингова функциональная схема
- •Программа (схема) работы машины Тьюринга,
- •10.2. Задания к выполнению работы
- •10.3. Контрольные вопросы
- •Учебно-методическое обеспечение
- •Заключение
- •424000 Йошкар-Ола, пл. Ленина, 3
- •424006 Йошкар-Ола, ул. Панфилова, 17
3.2. Задания к выполнению работы
1.
По таблице истинности (табл. 3.5) найдите
формулы
СДНФ
А
и СКНФ А,
определяющие функции
,
,
,
,
и придайте им более простой вид.
Таблица 3.5
Таблица истинности для нахождения формул СДНФ А и СКНФ А
|
|
|
|
|
|
|
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
2. Для каждой булевой функции от двух переменных найдите двойственную ей булеву функцию.
3. Булева функция называется:
а) сохраняющей 0,
если
;
б) сохраняющей 1,
если
.
Среди булевых функций от одной и от двух переменных найти все функции, сохраняющие 1, и все функции, сохраняющие 0 (функции см. п. 3.1.1).
4. Для следующих формул найти СДНФ А и СКНФ А, каждую двумя способами (путем равносильных преобразований и используя таблицы истинности):
5.Докажите
равносильность формул
и
сравнением их совершенных нормальных
форм (конъюнктивных или дизъюнктивных).
6. Найдите более простой вид формул, имеющих следующие совершенные нормальные формы:
7. Используя только критерий тождественной истинности и тождественной ложности формулы, установить, будет ли данная формула тождественно истинной, тождественно ложной или выполнимой:
8.
Пусть
– функция алгебры логики (булева
функция), которая принимает значение 1
тогда и только тогда, когда точно две
переменные принимают значение 1. Выразите
эту функцию через основные логические
операции.
9. Найдите СДНФ А для любой тождественно истинной формулы, содержащей: 1) одну переменную, 2) две переменные, 3) три переменные.
10. Найдите СКНФ А для любой тождественно ложной формулы, содержащей: 1) одну переменную, 2) две переменные, 3) три переменные.
11.
Построить формулу
от переменных
так, чтобы
.
12. Доказать равносильности второй группы.
1. .
2. .
3
законы
де Моргана
4 .
Решение примера 2.
Для решения примера необходимо составить таблицу истинности, получить по ней совершенные формы СДНФ F и СКНФ F, затем преобразовать СДНФ F в СКНФ F или СКНФ F в СДНФ F и объединить в одну из форм СДНФ F или СКНФ F, а после упрощения совершенных форм получить требуемое выражение:
а) составляем таблицу истинности (табл. 3.6);
б) по таблице истинности составляем СДНФ F и СКНФ F:
СДНФ
,
СКНФ
;
в) преобразуем СКНФ F в СДНФ F (или наоборот СДНФ F в СКНФ F)
СДНФ F
=
.
Таблица 3.6
Таблица истинности для нахождения формул
