
- •Н. Г. Моисеев математическая логика и теория алгоритмов
- •Оглавление
- •Предисловие
- •Введение
- •Техника безопасности при выполнении лабораторных работ
- •1. Общие требования безопасности
- •2. Требования безопасности перед началом работы
- •3. Требования безопасности во время работы
- •4. Требования безопасности в аварийной обстановке
- •5. Требования безопасности по окончании работы
- •6. Ответственность
- •Лабораторная работа № 1 алгебра высказываний и логические операции над ними
- •1.1. Теоретическая часть
- •1.1.1. Высказывания и операции над ними. Понятие высказывания
- •1.1.2. Логические операции над высказываниями
- •1.2. Задания к выполнению работы
- •1.3. Контрольные вопросы
- •2.1.1. Формулы алгебры высказываний
- •2.1.1. Равносильные формулы алгебры высказываний
- •I. Основные равносильности:
- •II. Равносильности, выражающие одни логические операции через другие:
- •III. Равносильности, выражающие основные законы алгебры логики:
- •2.2. Задания к выполнению работы
- •2.3. Контрольные вопросы
- •Учебно-методическое обеспечение
- •Лабораторная работа № 3 функции алгебры логики. Совершенные нормальные формы
- •3.1. Теоретическая часть
- •3.1.1. Функции алгебры логики
- •3.1.2. Представление произвольной функции алгебры логики в виде формулы алгебры логики
- •3.1.3. Закон двойственности
- •3.1.4. Дизъюнктивная нормальная форма (днф) и совершенная дизъюнктивная нормальная форма (сднф)
- •3.1.5. Конъюнктивная нормальная форма (кнф) и совершенная конъюнктивная нормальная форма (скнф)
- •3.1.6. Проблема разрешимости
- •3.2. Задания к выполнению работы
- •Сднф и скнф операции конъюнкции
- •3.3. Контрольные вопросы
- •4.1.1. Основные понятия релейно-контакных схем
- •4.1.2. Реализация с помощью релейно-контакных схем основных логических операций
- •4.2. Задания к выполнению работы
- •4.3. Контрольные вопросы
- •5.2. Задания к выполнению работы
- •5.3. Контрольные вопросы
- •Учебно-методическое обеспечение
- •Лабораторная работа № 6 построение доказательств в логике высказываний
- •6.1. Теоретическая часть
- •6.1.1. Основные понятия и определения, используемые при построении доказательств в логике высказываний
- •6.1.2. Аксиоматический метод доказательства логических выражений
- •6.1.3. Конструктивный метод доказательства логических выражений
- •Метод доказательства логических выражений
- •6.1.4. Принцип резолюций
- •6.1.5. Метод Вонга
- •6.1.6. Метод натурального исчисления
- •6.2. Задания к выполнению работы
- •6.3. Контрольные вопросы
- •7.1.1. Составление легенд на основе клауз
- •7.1.2. Составление клауз на основе легенд
- •7.2. Задания к выполнению работы
- •7.3. Контрольные вопросы
- •8.1.1. Формулы исчисления высказываний
- •8.1.2. Определение доказуемой формулы
- •1. Система аксиом исчисления высказываний
- •2. Правила вывода
- •1. Правило подстановки
- •2. Правило заключения.
- •3. Определение доказуемой формулы
- •8.1.3. Производные правила вывода
- •8.1.4. Понятие выводимости формулы из совокупности формул
- •8.1.5. Понятие вывода
- •8.1.6. Правила выводимости
- •13. Правило исключения третьего в доказуемых формулах
- •8.1.7. Связь между алгеброй высказываний и исчислением высказываний
- •Теоремы, устанавливающие связь между алгеброй высказываний и исчислением высказываний
- •8.2. Задания к выполнению работы
- •8.3. Контрольные вопросы
- •9.1.1. Логические операции над предикатами
- •9.1.2. Кванторные операции
- •9.1.3. Понятие формулы логики предикатов
- •9.1.4. Значение формулы логики предикатов
- •9.1.5. Равносильные формулы логики предикатов
- •9.1.6. Предваренная нормальная форма
- •9.1.7. Общезначимость и выполнимость формул
- •9.2. Задания к выполнению работы
- •9.3. Контрольные вопросы
- •Учебно-методическое обеспечение
- •Лабораторная работа № 10 алгоритмы и их применение
- •10.1. Теоретическая часть
- •10.1.1. Характерные черты алгоритма и основные требования к алгоритмическим процедурам
- •10.1.2. Классификация алгоритмических моделей
- •10.1.3. Машины Тьюринга
- •Тьюрингова функциональная схема
- •Программа (схема) работы машины Тьюринга,
- •10.2. Задания к выполнению работы
- •10.3. Контрольные вопросы
- •Учебно-методическое обеспечение
- •Заключение
- •424000 Йошкар-Ола, пл. Ленина, 3
- •424006 Йошкар-Ола, ул. Панфилова, 17
3.1.6. Проблема разрешимости
Все формулы алгебры логики делятся на три класса:
тождественно истинные;
тождественно ложные;
выполнимые.
Определения тождественно истинной и тождественно ложной формул были даны ранее.
Выполнимой формулой А называется формула, которая принимает значение «истина» хотя бы на одном наборе значений входящих в нее переменных и при этом не является тождественно истинной.
В связи с этим возникает задача: к какому классу относится данная формула? Эта задача носит название проблемы разрешимости.
Данная проблема
в действительности разрешима, поскольку
для каждой формулы алгебры логики может
быть записана таблица истинности,
которая и даст ответ на поставленный
вопрос. Трудность состоит в том, что
практическое использование таблицы
истинности для формулы
при больших
проблематично.
Поэтому существует другой способ, позволяющий, не используя таблицы истинности, определить, к какому классу относится формула А. Этот способ основан на приведении формулы к нормальной форме (КНФ или ДНФ) и использовании алгоритма, который позволяет определить, является ли данная формула тождественно истинной или не является. При этом решается вопрос о том, будет ли формула А выполнимой.
Теорема. Для того, чтобы формула алгебры логики А была тождественно истинна (ложна), необходимо и достаточно, чтобы каждая дизъюнкция (конъюнкция), входящая в КНФ А (ДНФ А), содержала переменную и ее отрицание.
Пример 3.3
Установить класс
формулы
.
Решение
Приводим формулу к какой-либо нормальной форме:
Полученная ДНФ А не является тождественно ложной, так как не каждая элементарная конъюнкция содержит переменную и ее отрицание. Следовательно, исходная формула тождественно истинна или выполнима. Для дальнейшего решения преобразуем ее к КНФ.
Полученная КНФ А не является тождественно истинной, поскольку не каждая элементарная дизъюнкция содержит переменную и ее отрицание.
Таким образом, исходная формула не является ни тождественно ложной, ни тождественно истинной, следовательно, она выполнима.
Проверим это с помощью таблицы истинности
Таблица 3.5
Таблица истинности
формулы
|
|
|
|
|
|
|
|
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
В соответствии с определением формула является выполнимой, если она принимает значение 1 хотя бы на одном наборе значений входящих в нее переменных и при этом не является тождественно истинной. По таблице истинности (табл. 3.5) видно, что формула отвечает именно такому определению и, следовательно, является выполнимой.