
- •Тема: Обмен и функции углеводов. Занятие №1.
- •2.1. Понятие об углеводах, биологическая роль и химическое строение отдельных представителей
- •2.2. Протеогликаны, гликопротеины.
- •2.3. Переваривание и всасывание углеводов в желудочно-кишечном тракте. Роль клетчатки. Непереносимость
- •Занятие №2.
- •2. Основные вопросы темы:
- •Общая схема источников и путей использования глюкозы в организме
- •2.3. Анаэробный распад глюкозы. Биологическая роль. Эффект Пастера.
- •2.3. Глюконеогенез и его значение.
- •2.4. Взаимосвязь гликолиза в мышцах и глюконеогенеза в печени (цикл Кори).
- •Занятие №3.
- •2.1. Пентозофосфатный путь превращений глюкозы. Окислительные реакции (до стадии рибулозо-5-фосфата).
- •2.2. Влияние этилового спирта на углеводный обмен.
- •2.3. Гликоген – свойства, биосинтез и мобилизация гликогена.
- •2.4. Гликогенозы
- •2.6. Сахарный диабет, биохимическая характеристика патогенеза.
- •Контрольная работа № 6. (Модуль 2)
- •1. Основные вопросы темы:
2.3. Гликоген – свойства, биосинтез и мобилизация гликогена.
Гликоген – животный крахмал, главный резервный гомополисахарид. Значительная часть глюкозы, поступающей в кровь, превращается в гликоген – запасный полисахарид, используемый в интервалах между приемами пищи в качестве источника глюкозы. Наибольшая концентрация гликогена обнаруживается в печени 2 – 6%, а в мышцах содержится 0,5 – 2%. В клетке гликоген находится не в растворенном состоянии, а в виде гранул. Гликоген имеет высокую молекулярную массу (1∙106 - 2∙108) и содержит до 1 млн. остатков глюкозы, соединенных 1,4 и 1,6 - гликозидными связями. Гликоген с йодом дает красно – бурое окрашивание.
Синтез гликогена.
Происходит тогда, когда после использования глюкозы остается её часть и она запасается в организме в виде
гликогена.
Фермент гликогенсинтаза участвует в образовании α-1,4-гликозидных связей, ветвящий фермент в образовании α-1,6-гликозидных связей. Образовавшиеся молекулы гликогена обладают низкой растворимостью и, следовательно, низким влиянием на осмотическое давление в клетке по сравнению с глюкозой, это объясняет то, что в клетке депонируется гликоген, а не глюкоза.
Распад гликогена.
Распад гликогена с образованием глюкозы происходит в период между приемами пищи, физической работе, при стрессе.
Пути мобилизации гликогена:
фосфоролитический.
амилолитический путь распада гликогена происходит при участии фермента амилазы.
Фосфоролитический путь – основной путь распада гликогена с образованием глюкозы:
В
мышечной ткани нет фермента
глюкозо-6-фосфатазы, поэтому гликоген
мышц не распадается с
образованием глюкозы, а окисляется или аэробным или анаэробным путем с освобождением энергии. Через
10-18 часов после приема пищи запасы гликогена в печени значительно истощаются.
Регуляция уровня глюкозы в крови. Роль ЦНС, механизм действия инсулина, адреналина, глюкагона,
СТГ, глюкокортикоидов, тироксина и их влияние на состояние углеводного обмена.
Ведущее значение в регуляции углеводного обмена принадлежит центральной нервной системе. Снижение уровня глюкозы в крови приводит к повышенной секреции адреналина, глюкагона, которые, поступая в орган-мишень для этих гормонов (печень), узнаются рецепторами мембран клеток печени и активируют фермент мембраны аденилатциклазу, запуская механизм, приводящий к распаду гликогена с образованием глюкозы.
Схема механизма взаимодействия адреналина и глюкагона с клеткой:
Адреналин – повышает уровень глюкозы за счет активации фермента фосфорилазы (аденилатциклазная система), которая приводит к распаду гликогена с образованием глюкозы, блокирует фермент гликогенсинтазу, т.е. синтез гликогена.
Глюкагон – действует подобно адреналину, но плюс к этому активирует ферменты глюконеогенеза.
Глюкокортикоиды – повышают уровень глюкозы крови, являясь индукторами синтеза ферментов глюконеогенеза.
СТГ актвирует глюконеогенез, тироксин активирует инсулиназу, расщепляющую инсулин, влияет на всасывание глюкозы в кишечнике.