- •«Сибирский государственный аэрокосмический университет им. Академика м.Ф. Решетнева»
- •1. Общие понятия.
- •1.1. Гипотеза непрерывности среды.
- •1.2. Основные физические свойства жидкости.
- •2. Предмет курса механики полёта беспилотных летательных аппаратов
- •2.1. Этапы исследования полёта летательных аппаратов.
- •2.2. Общие сведения об управлении полётом.
- •2.3. Силы, действующие на летательный аппарат.
- •Фиг.1 Силы, действующие на летательный аппарат в полёте
- •Силы, действующие на летательные аппараты при прямолинейном полёте.
- •Аэродинамическая нормальная сила.
- •Силы, действующие на летательный аппарат при горизонтальном манёвре без скольжения (вид сзади),
- •Аэродинамически осесимметричные схемы летательных аппаратов.
- •Нормальная сила, создаваемая двигателем.
- •Пример установки стартового двигателя под углом к оси летательного аппарата.
- •3. Основные соотношения теории реактивного движения.
- •3.1. Движение точки переменной массы. Тяга реактивного двигателя.
- •Тяга реактивного двигателя
- •Фиг.11 Силы, действующие на закреплённую ракету.
- •Фиг.12. Распределение сил давления по поверхности ракеты и по внутренней поверхности камеры реактивного двигателя.
- •Удельная тяга или удельный импульс
- •4. Органы управления летательными аппаратами.
- •Управление с помощью аэродинамических сил.
- •Фиг.14. Воздушные рули на задних кромках крыльев.
- •Фиг.15. Основные типы интерцепторов.
- •Фиг.16. Управляемый снаряд с поворотными крыльями
- •Фиг.17. Воздушные рули в схеме «утка»
- •Фиг.18. Пример схемы «бесхвостка»
- •Управление с помощью реактивных сил
- •Фиг.19. Схема управления летательным аппаратом посредством поворота ракетного двигателя.
- •Управление креном
- •Фиг.19. Силы, возникающие при отклонении элеронов
- •5. Система управления летательным аппаратом.
- •6. Уравнения движения жидкости и газа. Законы истечения.
- •6.1. Уравнение постоянства расхода (уравнение неразрывности).
- •6.2. Дифференциальные уравнения движения идеальной жидкости (уравнение Бернулли).
- •6.3. Геометрический и энергетический смысл уравнения Бернулли.
- •6.3.1. Геометрический смысл уравнения Бернулли.
- •6.3.2. Физический смысл уравнения Бернулли.
- •6.4. Уравнение Бернулли для потока реальной (вязкой) жидкости.
- •6.5. Применение уравнения Бернулли на практике.
- •Трубка полного напора (трубка Пито)
- •7. Аэродинамика и газодинамика. Характеристики потока.
- •7.1. Стандартная атмосфера (са)
- •7.2. Сжимаемость газов. Скорость распространения звука в газе.
- •Фиг. 20 Распространение слабых возмущений в неподвижной среде.
- •Фиг. 21 Распространение слабых возмущений в дозвуковом потоке.
- •Фиг. 22. Распространение слабых возмущений в сверхзвуковом потоке.
- •Фиг. 24. Огибающая семейства ударных волн в сверхзвуковом потоке. Приемник воздушного давления (пвд).
- •7.3 Теория ламинарного течения в круглых трубах.
- •7.3.1 Расход при ламинарном течении жидкости
- •7.3.2. Средняя скорость
- •7.3.3. Потери напора на трение
- •7.4. Турбулентный режим движения жидкости.
- •7.4.1. Особенности турбулентного течения. Пограничный слой.
- •8. Ламинарный и турбулентный пограничные слои.
- •8.1. Основные понятия пограничного слоя.
- •8.2. Выводы по разделу
- •8.3. Ламинарный и турбулентный режимы течения в пс.
- •Фиг. 27. Структура пс при переходе ламинарного течения в турбулентное.
- •8.3. Интегральное соотношение для установившегося течения в пограничном слое несжимаемой жидкости.
- •8.4. Пограничный слой и сопротивление трению плоской пластины в несжимаемой среде для ламинарного режима течения.
- •Фиг.31. Изменение напряжения трения и толщины пограничного слоя по длине пластины.
- •8.5. Отрыв течения в пограничном слое и образование вихрей. Аэродинамически удобообтекаемые и неудобообтекаемые тела.
- •Фиг.34. Развитие области отрывного течения за цилиндром.
- •Фиг.35. Развитие области отрывного течения за сферой.
- •Фиг.37. Зависимость коэффициента лобового сопротивления Сх от числа Rе для удобообтекаемого тела.
- •9. Элементы теории подобия потоков.
- •9.1. Геометрическое, кинематическое и динамическое подобие. Коэффициенты подобия.
- •9.2. Полное и частичное динамическое подобие. Критерии динамического подобия.
- •10. Динамика полёта.
- •10.1 Предмет и задачи курса динамики полёта.
- •10.2. Системы координат.
- •Фиг. 41 Геоцентрическая система координат
- •Фиг. 42 Геодезическая система координат
- •Фиг. 43 Земная система координат
- •Фиг. 44 Стартовая система координат
- •Фиг. 45 Ориентация связанных осей на старте летательного аппарата
- •Начальная стартовая система координат.
- •Фиг. 46 Местная географическая система координат
- •Геоцентрическая система координат.
- •Скоростная и полускоростная системы координат.
- •10.3. Косинусы углов между осями систем координат
- •10.3.1. Косинусы углов между осями связанной и начальной стартовой систем координат.
- •Фиг.47 Переход от начальной стартовой системы координат к связанной.
- •Фиг.48 Последовательные повороты на углы:
- •10.3.2. Направляющие косинусы между осями земной и связанной систем координат.
- •Фиг.49 Переход от земной системы координат к связанной системе координат.
- •10.3.3 Косинусы углов между осями полускоростной системы координат и местной географической системой координат.
- •Фиг.50 Переход от местной географической системы координат к полускоростной системе координат.
- •10.3.4. Косинусы углов между связанной и скоростной (поточной) системами координат.
- •Фиг.51 Связанная система осей координат.
- •Фиг.52 Скоростная система координат .
- •Фиг.53. Переход от скоростных осей к связанным осям.
- •11. Уравнения движения ла.
- •11.1. Принцип составления уравнений полёта реактивного ла.
- •11.1.1. Теорема о количестве движения.
- •11.1.2. Теорема о моменте количеств движения.
- •11.1.3. Принцип затвердевания.
- •11.1.4. Сила тяги реактивного двигателя (рд).
- •11.2. Уравнения движения ла в векторной форме
- •11.2.1. Уравнения движения центра масс.
- •11.2.2. Уравнение вращательного движения относительно центра масс.
- •11.2.3. Векторные уравнения движения ла относительно Земли.
- •11.3. Уравнения движения летательного аппарата в скалярной форме.
- •11.4. Общая система уравнений движения летательного аппарата.
- •Кинематические уравнения движения центра масс летательного аппарата.
- •11.1.5.Связи, накладываемые на движение летательного аппарата системой управления.
- •11.1.6. Уравнения системы стабилизации.
- •11.1.7. Уравнения системы наведения.
- •12. Траектории движения летательного аппарата.
- •12.1. Траектории полета баллистических ракет(бр) и ракет-носителей(рн).
- •12.2. Участки траектории полета баллистической ракеты и рн.
- •12.2.1 Участок выведения. Номинальные параметры и возмущенное движение
- •Фиг.65 Функции номинального и возмущенного движений.
- •Уравнение баллистики.
- •Фиг.66 Отсчёт координат от теоретической вершины ракеты.
- •Программа выведения.
- •12.2. Полёт летательного аппарата в центральном поле тяготения за пределами атмосферы.
- •Фиг.68 к выводу уравнений движения в полярной системе координат.
- •Траектория движения в общем виде
- •Фиг.69 Траектории свободного полета при различных скоростях выведения.
- •12.3. Атмосферный участок (входа в атмосферу).
- •12.4. Уравнения возмущенного движения.
- •12.6. Передаточные функции и их свойства.
- •12.7. Частотные характеристики и частотный критерий устойчивости.
- •12.8.Структура автомата стабилизации.
- •12.9 Эффективность органов управления.
12.7. Частотные характеристики и частотный критерий устойчивости.
Для решения задачи устойчивости и оценки качества переходных процессов ракет как объектов автоматического регулирования широко используются их частотные характеристики.
Пусть задано движение органа управления ракеты, имеющее гармонический характер. Например,
.
Через некоторое
время(после того, как затухнут собственные
колебания) ракета будет совершать
вынужденные колебания с частотой
.
Колебания корпуса ракеты вызывают на
входе системы стабилизации сигнал
.
При фиксированной
величине
амплитуда колебаний
и сдвиг по фазе
являются функциями
частоты
.
Функцию
называют
амплитудно–частотной
характеристикой,
а
– фазочастотной
характеристикой
ракеты.
Функции
и
определяют
амплитудно – фазовую частотную
характеристику (АФЧХ) или просто частотную
характеристику.
Одним из преимуществ методов, основанных на использовании частотных характеристик, является то, что частотные характеристики могут быть определены из эксперимента с моделью ракеты, когда её свойства выразить дифференциальными уравнениями ещё не удаётся.
Если известна передаточная функция ракеты W(p), то, подставляя p = i ω, получим выражение амплитудно-фазовой частотной характеристики:
В ряде случаев частотные характеристики представляются в виде годографа на комплексной плоскости Z = U + iV, причём:
;
U(ω) = A(ω)cos(φ(ω)); V(ω) = A(ω)sin(φ(ω)) .
Фиг.83
Любая точка годографа функции W(iω) комплексное передаточное число, в котором A(ω) – модуль комплексного числа, φ(ω) – аргумент комплексного числа.
Устойчивость или неустойчивость разомкнутой цепи не дают основания делать заключение об устойчивости замкнутой системы, состоящей из тех же звеньев, так как характеристическое уравнение разомкнутой цепи Q(p) отличается от характеристического уравнения замкнутой системы
Q(p) + R(p) = 0.
Устойчивой разомкнутой цепи может соответствовать неустойчивая замкнутая система и наоборот.
В дальнейшем будем применять частотный критерий Найквиста, который даёт возможность оценить устойчивость замкнутой системы по годографу – амплитудно-фазовой характеристики соответствующей разомкнутой цепи.
При составлении уравнений возмущённого движения за положительное было принято такое направление управляющей силы. Которое вызывает уменьшение отклонения углов υ, ψ, γ. В этом случае в формулировках критерия Найквиста используется положительная вещественная полуось (фиг.83) и точка С на этой полуоси с координатами (1, io).
Сформулируем критерий Найквиста для случая, когда степени характеристического полинома замкнутой системы и разомкнутой цепи одинаковы.
Для устойчивости замкнутой линейной системы необходимо и достаточно, чтобы при движении точки N вдоль годографа разомкнутой цепи при 0 ≤ ω ≤ +∞ вектор СN совершал поворот на угол φ = mπ (против часовой стрелки). Здесь m – число корней с положительными вещественными частями в характеристическом уравнении разомкнутой цепи.
Например, годограф радиуса-вектора CN свидетельствует об устойчивости замкнутой системы, характеристическое уравнение разомкнутой цепи имеет один корень с положительной вещественной частью, то есть если m = 1. Наоборот, если система неустойчива m ≠ 1
