
- •«Сибирский государственный аэрокосмический университет им. Академика м.Ф. Решетнева»
- •1. Общие понятия.
- •1.1. Гипотеза непрерывности среды.
- •1.2. Основные физические свойства жидкости.
- •2. Предмет курса механики полёта беспилотных летательных аппаратов
- •2.1. Этапы исследования полёта летательных аппаратов.
- •2.2. Общие сведения об управлении полётом.
- •2.3. Силы, действующие на летательный аппарат.
- •Фиг.1 Силы, действующие на летательный аппарат в полёте
- •Силы, действующие на летательные аппараты при прямолинейном полёте.
- •Аэродинамическая нормальная сила.
- •Силы, действующие на летательный аппарат при горизонтальном манёвре без скольжения (вид сзади),
- •Аэродинамически осесимметричные схемы летательных аппаратов.
- •Нормальная сила, создаваемая двигателем.
- •Пример установки стартового двигателя под углом к оси летательного аппарата.
- •3. Основные соотношения теории реактивного движения.
- •3.1. Движение точки переменной массы. Тяга реактивного двигателя.
- •Тяга реактивного двигателя
- •Фиг.11 Силы, действующие на закреплённую ракету.
- •Фиг.12. Распределение сил давления по поверхности ракеты и по внутренней поверхности камеры реактивного двигателя.
- •Удельная тяга или удельный импульс
- •4. Органы управления летательными аппаратами.
- •Управление с помощью аэродинамических сил.
- •Фиг.14. Воздушные рули на задних кромках крыльев.
- •Фиг.15. Основные типы интерцепторов.
- •Фиг.16. Управляемый снаряд с поворотными крыльями
- •Фиг.17. Воздушные рули в схеме «утка»
- •Фиг.18. Пример схемы «бесхвостка»
- •Управление с помощью реактивных сил
- •Фиг.19. Схема управления летательным аппаратом посредством поворота ракетного двигателя.
- •Управление креном
- •Фиг.19. Силы, возникающие при отклонении элеронов
- •5. Система управления летательным аппаратом.
- •6. Уравнения движения жидкости и газа. Законы истечения.
- •6.1. Уравнение постоянства расхода (уравнение неразрывности).
- •6.2. Дифференциальные уравнения движения идеальной жидкости (уравнение Бернулли).
- •6.3. Геометрический и энергетический смысл уравнения Бернулли.
- •6.3.1. Геометрический смысл уравнения Бернулли.
- •6.3.2. Физический смысл уравнения Бернулли.
- •6.4. Уравнение Бернулли для потока реальной (вязкой) жидкости.
- •6.5. Применение уравнения Бернулли на практике.
- •Трубка полного напора (трубка Пито)
- •7. Аэродинамика и газодинамика. Характеристики потока.
- •7.1. Стандартная атмосфера (са)
- •7.2. Сжимаемость газов. Скорость распространения звука в газе.
- •Фиг. 20 Распространение слабых возмущений в неподвижной среде.
- •Фиг. 21 Распространение слабых возмущений в дозвуковом потоке.
- •Фиг. 22. Распространение слабых возмущений в сверхзвуковом потоке.
- •Фиг. 24. Огибающая семейства ударных волн в сверхзвуковом потоке. Приемник воздушного давления (пвд).
- •7.3 Теория ламинарного течения в круглых трубах.
- •7.3.1 Расход при ламинарном течении жидкости
- •7.3.2. Средняя скорость
- •7.3.3. Потери напора на трение
- •7.4. Турбулентный режим движения жидкости.
- •7.4.1. Особенности турбулентного течения. Пограничный слой.
- •8. Ламинарный и турбулентный пограничные слои.
- •8.1. Основные понятия пограничного слоя.
- •8.2. Выводы по разделу
- •8.3. Ламинарный и турбулентный режимы течения в пс.
- •Фиг. 27. Структура пс при переходе ламинарного течения в турбулентное.
- •8.3. Интегральное соотношение для установившегося течения в пограничном слое несжимаемой жидкости.
- •8.4. Пограничный слой и сопротивление трению плоской пластины в несжимаемой среде для ламинарного режима течения.
- •Фиг.31. Изменение напряжения трения и толщины пограничного слоя по длине пластины.
- •8.5. Отрыв течения в пограничном слое и образование вихрей. Аэродинамически удобообтекаемые и неудобообтекаемые тела.
- •Фиг.34. Развитие области отрывного течения за цилиндром.
- •Фиг.35. Развитие области отрывного течения за сферой.
- •Фиг.37. Зависимость коэффициента лобового сопротивления Сх от числа Rе для удобообтекаемого тела.
- •9. Элементы теории подобия потоков.
- •9.1. Геометрическое, кинематическое и динамическое подобие. Коэффициенты подобия.
- •9.2. Полное и частичное динамическое подобие. Критерии динамического подобия.
- •10. Динамика полёта.
- •10.1 Предмет и задачи курса динамики полёта.
- •10.2. Системы координат.
- •Фиг. 41 Геоцентрическая система координат
- •Фиг. 42 Геодезическая система координат
- •Фиг. 43 Земная система координат
- •Фиг. 44 Стартовая система координат
- •Фиг. 45 Ориентация связанных осей на старте летательного аппарата
- •Начальная стартовая система координат.
- •Фиг. 46 Местная географическая система координат
- •Геоцентрическая система координат.
- •Скоростная и полускоростная системы координат.
- •10.3. Косинусы углов между осями систем координат
- •10.3.1. Косинусы углов между осями связанной и начальной стартовой систем координат.
- •Фиг.47 Переход от начальной стартовой системы координат к связанной.
- •Фиг.48 Последовательные повороты на углы:
- •10.3.2. Направляющие косинусы между осями земной и связанной систем координат.
- •Фиг.49 Переход от земной системы координат к связанной системе координат.
- •10.3.3 Косинусы углов между осями полускоростной системы координат и местной географической системой координат.
- •Фиг.50 Переход от местной географической системы координат к полускоростной системе координат.
- •10.3.4. Косинусы углов между связанной и скоростной (поточной) системами координат.
- •Фиг.51 Связанная система осей координат.
- •Фиг.52 Скоростная система координат .
- •Фиг.53. Переход от скоростных осей к связанным осям.
- •11. Уравнения движения ла.
- •11.1. Принцип составления уравнений полёта реактивного ла.
- •11.1.1. Теорема о количестве движения.
- •11.1.2. Теорема о моменте количеств движения.
- •11.1.3. Принцип затвердевания.
- •11.1.4. Сила тяги реактивного двигателя (рд).
- •11.2. Уравнения движения ла в векторной форме
- •11.2.1. Уравнения движения центра масс.
- •11.2.2. Уравнение вращательного движения относительно центра масс.
- •11.2.3. Векторные уравнения движения ла относительно Земли.
- •11.3. Уравнения движения летательного аппарата в скалярной форме.
- •11.4. Общая система уравнений движения летательного аппарата.
- •Кинематические уравнения движения центра масс летательного аппарата.
- •11.1.5.Связи, накладываемые на движение летательного аппарата системой управления.
- •11.1.6. Уравнения системы стабилизации.
- •11.1.7. Уравнения системы наведения.
- •12. Траектории движения летательного аппарата.
- •12.1. Траектории полета баллистических ракет(бр) и ракет-носителей(рн).
- •12.2. Участки траектории полета баллистической ракеты и рн.
- •12.2.1 Участок выведения. Номинальные параметры и возмущенное движение
- •Фиг.65 Функции номинального и возмущенного движений.
- •Уравнение баллистики.
- •Фиг.66 Отсчёт координат от теоретической вершины ракеты.
- •Программа выведения.
- •12.2. Полёт летательного аппарата в центральном поле тяготения за пределами атмосферы.
- •Фиг.68 к выводу уравнений движения в полярной системе координат.
- •Траектория движения в общем виде
- •Фиг.69 Траектории свободного полета при различных скоростях выведения.
- •12.3. Атмосферный участок (входа в атмосферу).
- •12.4. Уравнения возмущенного движения.
- •12.6. Передаточные функции и их свойства.
- •12.7. Частотные характеристики и частотный критерий устойчивости.
- •12.8.Структура автомата стабилизации.
- •12.9 Эффективность органов управления.
12.6. Передаточные функции и их свойства.
При исследовании
динамики летательных аппаратов как
объектов автоматического регулирования
широко используют передаточные функции
и частотные характеристики, которые
характеризуют свойства объекта
регулирования в области комплексного
переменного
и частотной области.
Уравнение возмущенного движения ракеты с «замороженными» коэффициентами в символической операторной форме можно записать в виде:
,
где
– операторные полиномы от
;
– любая из
интересующих нас величин (
и т.д.);
В дальнейшем
будем называть входной величиной, а
– выходной.
Передаточной
функцией системы
назовем отношение:
Из уравнений движения в символической операторной форме следует отношение:
,
которое показывает отношение результата (выходной величины) к воздействию (входной величины), выраженное в символической операторной форме.
Применяя прием “замораживания” коэффициентов, рассмотрим уравнения возмущенного движения в плоскости тангажа (193) и (195) аналогичные им уравнения в плоскости рыскания (196).
Запишем уравнения (193) в символической операторной форме:
(200)
Исключив ,найдем передаточную функцию:
(201)
в которой
(202)
Исключив из (200) ,найдем передаточную функцию:
(203)
Знаменатель передаточной функции является характеристическим полиномом систем уравнений (193) и (195):
(204)
Для системы
уравнений (196), описывающих возмущенное
движение в плоскости рыскания, коэффициент
,
так что
(205)
Корнями этого полинома будут
При упрощении
уравнений (190)
степень характеристического уравнения
понизилась на единицу, поэтому вместо
пары комплексно сопряженных корней,
характеризующих длиннопериодическое
движение, появился один нулевой корень.
Благодаря нулевому корню отклонения
и
в возмущенном движении, описываемом
уравнениями (196)
при
,
не затухают.
В зависимости от
знака коэффициента
корни
и
могут быть
вещественными или комплексно–сопряженными
с отрицательными вещественными частями.
Если ракета
статически устойчива (
)
и если еще
,
то
(206)
где
– собственная частота угловых колебаний
статически устойчивой ракеты в потоке
воздуха.
Если ракеты
статически неустойчива (
),
то корни
и
будут вещественными,
причем
(207)
Величины и являются, кроме того, корнями знаменателя передаточных функций, найденных из уравнений (196):
Поэтому для
статически устойчивой ракеты переходный
процесс относительно скоростей
и
колебательный и затухающий, а для
статически неустойчивой – переходный
процесс характеризуется неустойчивостью
апериодического характера.
Когда
,
то
,
движение относительно
скоростей
и
устойчиво(отклонения скоростей
и
затухают). Когда
,
то корни
и
будут вещественными, отрицательными и
равными. Свободное движение ракеты
относительно скоростей
и
также устойчиво.
Рассмотрим свойства
характеристического полинома (204).
Если
,
то
.
(208)
При заданных
начальных условиях свободное движение
(переходный процесс) относительно
координат
и
незатухающее, а относительно скоростей
и
оно затухает апериодически.
Когда центр давления
аэродинамических сил не совпадает с
центром массы ракеты
,
при анализе коэффициентов полинома
(204) возникает
два основных варианта:
а) если
,
то
и полином (204)
будет иметь один действительный
положительный корень и два
комплексно–сопряженных корней с
отрицательной вещественной частью:
;
(209)
б) если
,
то
и все 3 корня полинома (204)
вещественные, причем 2 из них положительные,
а один отрицательный:
;
(210)
Таким образом,
свободное движение в плоскости тангажа
при
неустойчиво.