- •«Сибирский государственный аэрокосмический университет им. Академика м.Ф. Решетнева»
- •1. Общие понятия.
- •1.1. Гипотеза непрерывности среды.
- •1.2. Основные физические свойства жидкости.
- •2. Предмет курса механики полёта беспилотных летательных аппаратов
- •2.1. Этапы исследования полёта летательных аппаратов.
- •2.2. Общие сведения об управлении полётом.
- •2.3. Силы, действующие на летательный аппарат.
- •Фиг.1 Силы, действующие на летательный аппарат в полёте
- •Силы, действующие на летательные аппараты при прямолинейном полёте.
- •Аэродинамическая нормальная сила.
- •Силы, действующие на летательный аппарат при горизонтальном манёвре без скольжения (вид сзади),
- •Аэродинамически осесимметричные схемы летательных аппаратов.
- •Нормальная сила, создаваемая двигателем.
- •Пример установки стартового двигателя под углом к оси летательного аппарата.
- •3. Основные соотношения теории реактивного движения.
- •3.1. Движение точки переменной массы. Тяга реактивного двигателя.
- •Тяга реактивного двигателя
- •Фиг.11 Силы, действующие на закреплённую ракету.
- •Фиг.12. Распределение сил давления по поверхности ракеты и по внутренней поверхности камеры реактивного двигателя.
- •Удельная тяга или удельный импульс
- •4. Органы управления летательными аппаратами.
- •Управление с помощью аэродинамических сил.
- •Фиг.14. Воздушные рули на задних кромках крыльев.
- •Фиг.15. Основные типы интерцепторов.
- •Фиг.16. Управляемый снаряд с поворотными крыльями
- •Фиг.17. Воздушные рули в схеме «утка»
- •Фиг.18. Пример схемы «бесхвостка»
- •Управление с помощью реактивных сил
- •Фиг.19. Схема управления летательным аппаратом посредством поворота ракетного двигателя.
- •Управление креном
- •Фиг.19. Силы, возникающие при отклонении элеронов
- •5. Система управления летательным аппаратом.
- •6. Уравнения движения жидкости и газа. Законы истечения.
- •6.1. Уравнение постоянства расхода (уравнение неразрывности).
- •6.2. Дифференциальные уравнения движения идеальной жидкости (уравнение Бернулли).
- •6.3. Геометрический и энергетический смысл уравнения Бернулли.
- •6.3.1. Геометрический смысл уравнения Бернулли.
- •6.3.2. Физический смысл уравнения Бернулли.
- •6.4. Уравнение Бернулли для потока реальной (вязкой) жидкости.
- •6.5. Применение уравнения Бернулли на практике.
- •Трубка полного напора (трубка Пито)
- •7. Аэродинамика и газодинамика. Характеристики потока.
- •7.1. Стандартная атмосфера (са)
- •7.2. Сжимаемость газов. Скорость распространения звука в газе.
- •Фиг. 20 Распространение слабых возмущений в неподвижной среде.
- •Фиг. 21 Распространение слабых возмущений в дозвуковом потоке.
- •Фиг. 22. Распространение слабых возмущений в сверхзвуковом потоке.
- •Фиг. 24. Огибающая семейства ударных волн в сверхзвуковом потоке. Приемник воздушного давления (пвд).
- •7.3 Теория ламинарного течения в круглых трубах.
- •7.3.1 Расход при ламинарном течении жидкости
- •7.3.2. Средняя скорость
- •7.3.3. Потери напора на трение
- •7.4. Турбулентный режим движения жидкости.
- •7.4.1. Особенности турбулентного течения. Пограничный слой.
- •8. Ламинарный и турбулентный пограничные слои.
- •8.1. Основные понятия пограничного слоя.
- •8.2. Выводы по разделу
- •8.3. Ламинарный и турбулентный режимы течения в пс.
- •Фиг. 27. Структура пс при переходе ламинарного течения в турбулентное.
- •8.3. Интегральное соотношение для установившегося течения в пограничном слое несжимаемой жидкости.
- •8.4. Пограничный слой и сопротивление трению плоской пластины в несжимаемой среде для ламинарного режима течения.
- •Фиг.31. Изменение напряжения трения и толщины пограничного слоя по длине пластины.
- •8.5. Отрыв течения в пограничном слое и образование вихрей. Аэродинамически удобообтекаемые и неудобообтекаемые тела.
- •Фиг.34. Развитие области отрывного течения за цилиндром.
- •Фиг.35. Развитие области отрывного течения за сферой.
- •Фиг.37. Зависимость коэффициента лобового сопротивления Сх от числа Rе для удобообтекаемого тела.
- •9. Элементы теории подобия потоков.
- •9.1. Геометрическое, кинематическое и динамическое подобие. Коэффициенты подобия.
- •9.2. Полное и частичное динамическое подобие. Критерии динамического подобия.
- •10. Динамика полёта.
- •10.1 Предмет и задачи курса динамики полёта.
- •10.2. Системы координат.
- •Фиг. 41 Геоцентрическая система координат
- •Фиг. 42 Геодезическая система координат
- •Фиг. 43 Земная система координат
- •Фиг. 44 Стартовая система координат
- •Фиг. 45 Ориентация связанных осей на старте летательного аппарата
- •Начальная стартовая система координат.
- •Фиг. 46 Местная географическая система координат
- •Геоцентрическая система координат.
- •Скоростная и полускоростная системы координат.
- •10.3. Косинусы углов между осями систем координат
- •10.3.1. Косинусы углов между осями связанной и начальной стартовой систем координат.
- •Фиг.47 Переход от начальной стартовой системы координат к связанной.
- •Фиг.48 Последовательные повороты на углы:
- •10.3.2. Направляющие косинусы между осями земной и связанной систем координат.
- •Фиг.49 Переход от земной системы координат к связанной системе координат.
- •10.3.3 Косинусы углов между осями полускоростной системы координат и местной географической системой координат.
- •Фиг.50 Переход от местной географической системы координат к полускоростной системе координат.
- •10.3.4. Косинусы углов между связанной и скоростной (поточной) системами координат.
- •Фиг.51 Связанная система осей координат.
- •Фиг.52 Скоростная система координат .
- •Фиг.53. Переход от скоростных осей к связанным осям.
- •11. Уравнения движения ла.
- •11.1. Принцип составления уравнений полёта реактивного ла.
- •11.1.1. Теорема о количестве движения.
- •11.1.2. Теорема о моменте количеств движения.
- •11.1.3. Принцип затвердевания.
- •11.1.4. Сила тяги реактивного двигателя (рд).
- •11.2. Уравнения движения ла в векторной форме
- •11.2.1. Уравнения движения центра масс.
- •11.2.2. Уравнение вращательного движения относительно центра масс.
- •11.2.3. Векторные уравнения движения ла относительно Земли.
- •11.3. Уравнения движения летательного аппарата в скалярной форме.
- •11.4. Общая система уравнений движения летательного аппарата.
- •Кинематические уравнения движения центра масс летательного аппарата.
- •11.1.5.Связи, накладываемые на движение летательного аппарата системой управления.
- •11.1.6. Уравнения системы стабилизации.
- •11.1.7. Уравнения системы наведения.
- •12. Траектории движения летательного аппарата.
- •12.1. Траектории полета баллистических ракет(бр) и ракет-носителей(рн).
- •12.2. Участки траектории полета баллистической ракеты и рн.
- •12.2.1 Участок выведения. Номинальные параметры и возмущенное движение
- •Фиг.65 Функции номинального и возмущенного движений.
- •Уравнение баллистики.
- •Фиг.66 Отсчёт координат от теоретической вершины ракеты.
- •Программа выведения.
- •12.2. Полёт летательного аппарата в центральном поле тяготения за пределами атмосферы.
- •Фиг.68 к выводу уравнений движения в полярной системе координат.
- •Траектория движения в общем виде
- •Фиг.69 Траектории свободного полета при различных скоростях выведения.
- •12.3. Атмосферный участок (входа в атмосферу).
- •12.4. Уравнения возмущенного движения.
- •12.6. Передаточные функции и их свойства.
- •12.7. Частотные характеристики и частотный критерий устойчивости.
- •12.8.Структура автомата стабилизации.
- •12.9 Эффективность органов управления.
11.1.1. Теорема о количестве движения.
Формулировка теоремы: производная по времени от количества движения системы равна главному вектору внешних сил.
Эту теорему можно применить только к системе, имеющей постоянную массу.
Имеем, (78)
- главный вектор (равнодействующая)
внешних сил в момент времени t,
действующих на систему переменного
состава
,
а следовательно и на систему
(систему
постоянного состава, состоящую из тех
материальных частиц, которые в некоторый
фиксированный момент времени t
находились
внутри поверхности S).
Представим
абсолютное движение системы
как сложное. Пусть движение частицы
относительно оболочки S
и осей
будет относительным. Тогда переносным
будет движение частицы вместе с оболочкой
S
и осями
относительно инерциальной системы
координат
.
Обозначим
–
абсолютную, переносную и относительную
скорости (ускорения) частицы,
- кориолисово ускорение.
Тогда,
.
По теореме сложения ускорений:
(79)
Поскольку,
,
следовательно,
- есть производная количества движения
системы
в относительном движении. Введем понятие
фиктивной скорости
,
тогда
.
Из вышесказанного получаем:
(80).
Аналогично:
.
Вектор кориолисовых сил инерции равен:
(81).
Введем понятие
“фиктивного количества движения” –
–
это количество движения системы
в момент времени t,
которая затвердела, т.е. прекратилось
движение частиц относительно твердой
оболочки S(
).
Тогда переносные ускорения частиц
системы
будут равны абсолютным ускорениям
полученного таким путем фиктивного
твердого тела S,
которое можно рассматривать как
“фиктивное твердое тело переменной
массы”, внутри которого с течением
времени возникают или исчезают
материальные частицы, неподвижные
относительно твердой оболочки тела.
Для производной по времени от количества движения тела S получаем формулу:
(82)
,
где
–
главный вектор реактивных сил,
обусловленных переносом количества
движения среды через поверхность S;
– главный вектор
вариационных сил, т.е. сил, возникающих
вследствие нестационарности относительного
движения среды. Эти силы обусловлены
изменениями (вариациями) количества
движения относительно осей Оx1,
Оy1,
Оz1.
Если относительное
движение среды стационарное, т.е. в
каждой точке, неподвижной относительно
осей Оx1,
Оy1,
Оz1,
плотность среды и скорость частиц
не меняются с течением времени, то
вариационные силы равны нулю.
Уравнение (82)
представляет собой запись теоремы об
изменении количества движения системы
переменного состава. Уравнение (82)
показывает, что для определения движения
тела с твердой оболочкой S
надо к числу внешних сил
,
действующих на систему суммарно, добавить
реактивные силы
, кориолисовы силы
и вариационные силы
.
11.1.2. Теорема о моменте количеств движения.
С помощью рассуждений, аналогичных изложенным в разделе 11.1.1. получим формулу теоремы об изменении главного момента движения системы переменного состава .
Рассмотрим твердое тело S,которое получается при затвердевании системы переменного состава в момент времени t. Примем центр масс твердого тела S и системы за начало системы координат Оx1, Оy1, Оz1.
Тогда:
,
(83)
где
-
главный момент количеств движения тела
S
при движении относительно осей, проходящих
через центр масс О
и движущихся поступательно;
-главный
момент всех внешних сил, действующих
на систему суммарно в момент времени
t;
–
главный момент
реактивных сил;
–
главный момент
кориолисовых сил;
–
главный момент
вариационных сил.
Уравнение (83) описывает вращательное движение твердой оболочки S относительно центра масс О системы переменного состава .
