- •«Сибирский государственный аэрокосмический университет им. Академика м.Ф. Решетнева»
- •1. Общие понятия.
- •1.1. Гипотеза непрерывности среды.
- •1.2. Основные физические свойства жидкости.
- •2. Предмет курса механики полёта беспилотных летательных аппаратов
- •2.1. Этапы исследования полёта летательных аппаратов.
- •2.2. Общие сведения об управлении полётом.
- •2.3. Силы, действующие на летательный аппарат.
- •Фиг.1 Силы, действующие на летательный аппарат в полёте
- •Силы, действующие на летательные аппараты при прямолинейном полёте.
- •Аэродинамическая нормальная сила.
- •Силы, действующие на летательный аппарат при горизонтальном манёвре без скольжения (вид сзади),
- •Аэродинамически осесимметричные схемы летательных аппаратов.
- •Нормальная сила, создаваемая двигателем.
- •Пример установки стартового двигателя под углом к оси летательного аппарата.
- •3. Основные соотношения теории реактивного движения.
- •3.1. Движение точки переменной массы. Тяга реактивного двигателя.
- •Тяга реактивного двигателя
- •Фиг.11 Силы, действующие на закреплённую ракету.
- •Фиг.12. Распределение сил давления по поверхности ракеты и по внутренней поверхности камеры реактивного двигателя.
- •Удельная тяга или удельный импульс
- •4. Органы управления летательными аппаратами.
- •Управление с помощью аэродинамических сил.
- •Фиг.14. Воздушные рули на задних кромках крыльев.
- •Фиг.15. Основные типы интерцепторов.
- •Фиг.16. Управляемый снаряд с поворотными крыльями
- •Фиг.17. Воздушные рули в схеме «утка»
- •Фиг.18. Пример схемы «бесхвостка»
- •Управление с помощью реактивных сил
- •Фиг.19. Схема управления летательным аппаратом посредством поворота ракетного двигателя.
- •Управление креном
- •Фиг.19. Силы, возникающие при отклонении элеронов
- •5. Система управления летательным аппаратом.
- •6. Уравнения движения жидкости и газа. Законы истечения.
- •6.1. Уравнение постоянства расхода (уравнение неразрывности).
- •6.2. Дифференциальные уравнения движения идеальной жидкости (уравнение Бернулли).
- •6.3. Геометрический и энергетический смысл уравнения Бернулли.
- •6.3.1. Геометрический смысл уравнения Бернулли.
- •6.3.2. Физический смысл уравнения Бернулли.
- •6.4. Уравнение Бернулли для потока реальной (вязкой) жидкости.
- •6.5. Применение уравнения Бернулли на практике.
- •Трубка полного напора (трубка Пито)
- •7. Аэродинамика и газодинамика. Характеристики потока.
- •7.1. Стандартная атмосфера (са)
- •7.2. Сжимаемость газов. Скорость распространения звука в газе.
- •Фиг. 20 Распространение слабых возмущений в неподвижной среде.
- •Фиг. 21 Распространение слабых возмущений в дозвуковом потоке.
- •Фиг. 22. Распространение слабых возмущений в сверхзвуковом потоке.
- •Фиг. 24. Огибающая семейства ударных волн в сверхзвуковом потоке. Приемник воздушного давления (пвд).
- •7.3 Теория ламинарного течения в круглых трубах.
- •7.3.1 Расход при ламинарном течении жидкости
- •7.3.2. Средняя скорость
- •7.3.3. Потери напора на трение
- •7.4. Турбулентный режим движения жидкости.
- •7.4.1. Особенности турбулентного течения. Пограничный слой.
- •8. Ламинарный и турбулентный пограничные слои.
- •8.1. Основные понятия пограничного слоя.
- •8.2. Выводы по разделу
- •8.3. Ламинарный и турбулентный режимы течения в пс.
- •Фиг. 27. Структура пс при переходе ламинарного течения в турбулентное.
- •8.3. Интегральное соотношение для установившегося течения в пограничном слое несжимаемой жидкости.
- •8.4. Пограничный слой и сопротивление трению плоской пластины в несжимаемой среде для ламинарного режима течения.
- •Фиг.31. Изменение напряжения трения и толщины пограничного слоя по длине пластины.
- •8.5. Отрыв течения в пограничном слое и образование вихрей. Аэродинамически удобообтекаемые и неудобообтекаемые тела.
- •Фиг.34. Развитие области отрывного течения за цилиндром.
- •Фиг.35. Развитие области отрывного течения за сферой.
- •Фиг.37. Зависимость коэффициента лобового сопротивления Сх от числа Rе для удобообтекаемого тела.
- •9. Элементы теории подобия потоков.
- •9.1. Геометрическое, кинематическое и динамическое подобие. Коэффициенты подобия.
- •9.2. Полное и частичное динамическое подобие. Критерии динамического подобия.
- •10. Динамика полёта.
- •10.1 Предмет и задачи курса динамики полёта.
- •10.2. Системы координат.
- •Фиг. 41 Геоцентрическая система координат
- •Фиг. 42 Геодезическая система координат
- •Фиг. 43 Земная система координат
- •Фиг. 44 Стартовая система координат
- •Фиг. 45 Ориентация связанных осей на старте летательного аппарата
- •Начальная стартовая система координат.
- •Фиг. 46 Местная географическая система координат
- •Геоцентрическая система координат.
- •Скоростная и полускоростная системы координат.
- •10.3. Косинусы углов между осями систем координат
- •10.3.1. Косинусы углов между осями связанной и начальной стартовой систем координат.
- •Фиг.47 Переход от начальной стартовой системы координат к связанной.
- •Фиг.48 Последовательные повороты на углы:
- •10.3.2. Направляющие косинусы между осями земной и связанной систем координат.
- •Фиг.49 Переход от земной системы координат к связанной системе координат.
- •10.3.3 Косинусы углов между осями полускоростной системы координат и местной географической системой координат.
- •Фиг.50 Переход от местной географической системы координат к полускоростной системе координат.
- •10.3.4. Косинусы углов между связанной и скоростной (поточной) системами координат.
- •Фиг.51 Связанная система осей координат.
- •Фиг.52 Скоростная система координат .
- •Фиг.53. Переход от скоростных осей к связанным осям.
- •11. Уравнения движения ла.
- •11.1. Принцип составления уравнений полёта реактивного ла.
- •11.1.1. Теорема о количестве движения.
- •11.1.2. Теорема о моменте количеств движения.
- •11.1.3. Принцип затвердевания.
- •11.1.4. Сила тяги реактивного двигателя (рд).
- •11.2. Уравнения движения ла в векторной форме
- •11.2.1. Уравнения движения центра масс.
- •11.2.2. Уравнение вращательного движения относительно центра масс.
- •11.2.3. Векторные уравнения движения ла относительно Земли.
- •11.3. Уравнения движения летательного аппарата в скалярной форме.
- •11.4. Общая система уравнений движения летательного аппарата.
- •Кинематические уравнения движения центра масс летательного аппарата.
- •11.1.5.Связи, накладываемые на движение летательного аппарата системой управления.
- •11.1.6. Уравнения системы стабилизации.
- •11.1.7. Уравнения системы наведения.
- •12. Траектории движения летательного аппарата.
- •12.1. Траектории полета баллистических ракет(бр) и ракет-носителей(рн).
- •12.2. Участки траектории полета баллистической ракеты и рн.
- •12.2.1 Участок выведения. Номинальные параметры и возмущенное движение
- •Фиг.65 Функции номинального и возмущенного движений.
- •Уравнение баллистики.
- •Фиг.66 Отсчёт координат от теоретической вершины ракеты.
- •Программа выведения.
- •12.2. Полёт летательного аппарата в центральном поле тяготения за пределами атмосферы.
- •Фиг.68 к выводу уравнений движения в полярной системе координат.
- •Траектория движения в общем виде
- •Фиг.69 Траектории свободного полета при различных скоростях выведения.
- •12.3. Атмосферный участок (входа в атмосферу).
- •12.4. Уравнения возмущенного движения.
- •12.6. Передаточные функции и их свойства.
- •12.7. Частотные характеристики и частотный критерий устойчивости.
- •12.8.Структура автомата стабилизации.
- •12.9 Эффективность органов управления.
10. Динамика полёта.
10.1 Предмет и задачи курса динамики полёта.
Основным содержанием курса динамики полёта летательных аппаратов является составление и исследование уравнений движения летательного аппарата, траектории полёта и методы их расчёта, а также динамических свойств летательного аппарата, как звена системы управления.
Мы будем рассматривать вопросы аэродинамики и динамики только беспилотных управляемых летательных аппаратов. При составлении и исследовании уравнений движения беспилотных летательных аппаратов опираются на основные положения теоретической механики, аэродинамики, теории автоматического управления и ряда других дисциплин.
Задача исследования полёта беспилотного летательного аппарата в самой общей постановке весьма сложна. Летательный аппарат с фиксированными рулями имеет 6 степеней свободы и его движение в пространстве описывается системой 12-ти дифференциальных уравнений первого порядка. Динамика такой сложной электромеханической системы, как управляемый беспилотный летательный аппарат, описывается значительно большим числом дифференциальных уравнений. Исследование подобной системы требует совместного интегрирования уравнений движения летательного аппарата и уравнений механических и электрических процессов, протекающих во всех элементах системы управления полётом. Ввиду чрезвычайной сложности задачи исследования полёта любого летательного аппарата, её решают по частям, разбивая на несколько этапов, переходя от менее трудных задач к более трудным.
На первом этапе исследования оказывается вполне допустимым рассматривать движение летательного аппарата как движение управляемой материальной точки. Как известно, движение твёрдого тела в пространстве раскладывается на движение центра масс тела и на вращение его вокруг центра масс. Тогда движение летательного аппарата представляется как движение материальной точки, масса которой равна массе летательного аппарата и к которой приложены силы тяжести, сила тяги двигателя и аэродинамические силы. Соответственно, схематизируется и работа системы управления – на движение центра масс летательного аппарата накладываются связи, описывающие идеальную работу системы управления.
На втором этапе исследуют уравнения движения летательного аппарата с учётом его вращения вокруг центра масс. Задачей этого этапа является изучение динамических свойств летательного аппарата, рассматриваемого, как элемент системы управления. При этом главным образом изучают реакцию летательного аппарата на отклонения органов управления и на воздействия различных внешних возмущений.
Лишь после изучения этих 2-х этапов переходят к 3-му, наиболее сложному этапу – исследованию динамики замкнутой системы управления, включающей в себя среди других элементов и сам летательный аппарат, как объект управления.
Одной из основных задач 3-го этапа является изучение точности полёта, характеризуемой величиной и вероятностью отклонений летательного аппарата от требуемой траектории. Эти отклонения (ошибки) возникают вследствие того, что в действительности элементы системы управления работают не идеально точно, летательный аппарат не идеально следит за отклонениями органов управления и, кроме того, на летательный аппарат и его систему управления в полёте воздействуют случайные величины. В результате требуется исследовать системы обыкновенных дифференциальных уравнений весьма высокого порядка, которые могут быть нелинейными, с правыми частями, явно зависящими от времени, с запаздывающими аргументами, со случайными функциями в правых частях и т.д.
Мы будем рассматривать круг вопросов, относящихся лишь к первым 2-м этапам исследования полёта, т.е. динамику самого летательного аппарата.
