
- •«Сибирский государственный аэрокосмический университет им. Академика м.Ф. Решетнева»
- •1. Общие понятия.
- •1.1. Гипотеза непрерывности среды.
- •1.2. Основные физические свойства жидкости.
- •2. Предмет курса механики полёта беспилотных летательных аппаратов
- •2.1. Этапы исследования полёта летательных аппаратов.
- •2.2. Общие сведения об управлении полётом.
- •2.3. Силы, действующие на летательный аппарат.
- •Фиг.1 Силы, действующие на летательный аппарат в полёте
- •Силы, действующие на летательные аппараты при прямолинейном полёте.
- •Аэродинамическая нормальная сила.
- •Силы, действующие на летательный аппарат при горизонтальном манёвре без скольжения (вид сзади),
- •Аэродинамически осесимметричные схемы летательных аппаратов.
- •Нормальная сила, создаваемая двигателем.
- •Пример установки стартового двигателя под углом к оси летательного аппарата.
- •3. Основные соотношения теории реактивного движения.
- •3.1. Движение точки переменной массы. Тяга реактивного двигателя.
- •Тяга реактивного двигателя
- •Фиг.11 Силы, действующие на закреплённую ракету.
- •Фиг.12. Распределение сил давления по поверхности ракеты и по внутренней поверхности камеры реактивного двигателя.
- •Удельная тяга или удельный импульс
- •4. Органы управления летательными аппаратами.
- •Управление с помощью аэродинамических сил.
- •Фиг.14. Воздушные рули на задних кромках крыльев.
- •Фиг.15. Основные типы интерцепторов.
- •Фиг.16. Управляемый снаряд с поворотными крыльями
- •Фиг.17. Воздушные рули в схеме «утка»
- •Фиг.18. Пример схемы «бесхвостка»
- •Управление с помощью реактивных сил
- •Фиг.19. Схема управления летательным аппаратом посредством поворота ракетного двигателя.
- •Управление креном
- •Фиг.19. Силы, возникающие при отклонении элеронов
- •5. Система управления летательным аппаратом.
- •6. Уравнения движения жидкости и газа. Законы истечения.
- •6.1. Уравнение постоянства расхода (уравнение неразрывности).
- •6.2. Дифференциальные уравнения движения идеальной жидкости (уравнение Бернулли).
- •6.3. Геометрический и энергетический смысл уравнения Бернулли.
- •6.3.1. Геометрический смысл уравнения Бернулли.
- •6.3.2. Физический смысл уравнения Бернулли.
- •6.4. Уравнение Бернулли для потока реальной (вязкой) жидкости.
- •6.5. Применение уравнения Бернулли на практике.
- •Трубка полного напора (трубка Пито)
- •7. Аэродинамика и газодинамика. Характеристики потока.
- •7.1. Стандартная атмосфера (са)
- •7.2. Сжимаемость газов. Скорость распространения звука в газе.
- •Фиг. 20 Распространение слабых возмущений в неподвижной среде.
- •Фиг. 21 Распространение слабых возмущений в дозвуковом потоке.
- •Фиг. 22. Распространение слабых возмущений в сверхзвуковом потоке.
- •Фиг. 24. Огибающая семейства ударных волн в сверхзвуковом потоке. Приемник воздушного давления (пвд).
- •7.3 Теория ламинарного течения в круглых трубах.
- •7.3.1 Расход при ламинарном течении жидкости
- •7.3.2. Средняя скорость
- •7.3.3. Потери напора на трение
- •7.4. Турбулентный режим движения жидкости.
- •7.4.1. Особенности турбулентного течения. Пограничный слой.
- •8. Ламинарный и турбулентный пограничные слои.
- •8.1. Основные понятия пограничного слоя.
- •8.2. Выводы по разделу
- •8.3. Ламинарный и турбулентный режимы течения в пс.
- •Фиг. 27. Структура пс при переходе ламинарного течения в турбулентное.
- •8.3. Интегральное соотношение для установившегося течения в пограничном слое несжимаемой жидкости.
- •8.4. Пограничный слой и сопротивление трению плоской пластины в несжимаемой среде для ламинарного режима течения.
- •Фиг.31. Изменение напряжения трения и толщины пограничного слоя по длине пластины.
- •8.5. Отрыв течения в пограничном слое и образование вихрей. Аэродинамически удобообтекаемые и неудобообтекаемые тела.
- •Фиг.34. Развитие области отрывного течения за цилиндром.
- •Фиг.35. Развитие области отрывного течения за сферой.
- •Фиг.37. Зависимость коэффициента лобового сопротивления Сх от числа Rе для удобообтекаемого тела.
- •9. Элементы теории подобия потоков.
- •9.1. Геометрическое, кинематическое и динамическое подобие. Коэффициенты подобия.
- •9.2. Полное и частичное динамическое подобие. Критерии динамического подобия.
- •10. Динамика полёта.
- •10.1 Предмет и задачи курса динамики полёта.
- •10.2. Системы координат.
- •Фиг. 41 Геоцентрическая система координат
- •Фиг. 42 Геодезическая система координат
- •Фиг. 43 Земная система координат
- •Фиг. 44 Стартовая система координат
- •Фиг. 45 Ориентация связанных осей на старте летательного аппарата
- •Начальная стартовая система координат.
- •Фиг. 46 Местная географическая система координат
- •Геоцентрическая система координат.
- •Скоростная и полускоростная системы координат.
- •10.3. Косинусы углов между осями систем координат
- •10.3.1. Косинусы углов между осями связанной и начальной стартовой систем координат.
- •Фиг.47 Переход от начальной стартовой системы координат к связанной.
- •Фиг.48 Последовательные повороты на углы:
- •10.3.2. Направляющие косинусы между осями земной и связанной систем координат.
- •Фиг.49 Переход от земной системы координат к связанной системе координат.
- •10.3.3 Косинусы углов между осями полускоростной системы координат и местной географической системой координат.
- •Фиг.50 Переход от местной географической системы координат к полускоростной системе координат.
- •10.3.4. Косинусы углов между связанной и скоростной (поточной) системами координат.
- •Фиг.51 Связанная система осей координат.
- •Фиг.52 Скоростная система координат .
- •Фиг.53. Переход от скоростных осей к связанным осям.
- •11. Уравнения движения ла.
- •11.1. Принцип составления уравнений полёта реактивного ла.
- •11.1.1. Теорема о количестве движения.
- •11.1.2. Теорема о моменте количеств движения.
- •11.1.3. Принцип затвердевания.
- •11.1.4. Сила тяги реактивного двигателя (рд).
- •11.2. Уравнения движения ла в векторной форме
- •11.2.1. Уравнения движения центра масс.
- •11.2.2. Уравнение вращательного движения относительно центра масс.
- •11.2.3. Векторные уравнения движения ла относительно Земли.
- •11.3. Уравнения движения летательного аппарата в скалярной форме.
- •11.4. Общая система уравнений движения летательного аппарата.
- •Кинематические уравнения движения центра масс летательного аппарата.
- •11.1.5.Связи, накладываемые на движение летательного аппарата системой управления.
- •11.1.6. Уравнения системы стабилизации.
- •11.1.7. Уравнения системы наведения.
- •12. Траектории движения летательного аппарата.
- •12.1. Траектории полета баллистических ракет(бр) и ракет-носителей(рн).
- •12.2. Участки траектории полета баллистической ракеты и рн.
- •12.2.1 Участок выведения. Номинальные параметры и возмущенное движение
- •Фиг.65 Функции номинального и возмущенного движений.
- •Уравнение баллистики.
- •Фиг.66 Отсчёт координат от теоретической вершины ракеты.
- •Программа выведения.
- •12.2. Полёт летательного аппарата в центральном поле тяготения за пределами атмосферы.
- •Фиг.68 к выводу уравнений движения в полярной системе координат.
- •Траектория движения в общем виде
- •Фиг.69 Траектории свободного полета при различных скоростях выведения.
- •12.3. Атмосферный участок (входа в атмосферу).
- •12.4. Уравнения возмущенного движения.
- •12.6. Передаточные функции и их свойства.
- •12.7. Частотные характеристики и частотный критерий устойчивости.
- •12.8.Структура автомата стабилизации.
- •12.9 Эффективность органов управления.
6.2. Дифференциальные уравнения движения идеальной жидкости (уравнение Бернулли).
Рассмотрим движущуюся невязкую жидкость, у которой плотность ρ. Выделим в ней элементарный параллелепипед с рёбрами dx, dy, dz, параллельными к координатным осям. Составим уравнения движения выделенного элемента жидкости массой ρdxdydz в проекциях на координатные оси.
Также, как и при рассмотрении уравнения неразрывности объёма жидкости, будем считать, что на массу жидкости действует результирующая массовая сила (например, сила тяжести), составляющие которой, отнесённые к единице массы, равны x, y, z. Тогда массовые силы, действующие на выделенный объём в направлении координатных осей, будут равны этим составляющим, умноженным на массу выделенного объёма.
Кроме того, на массу жидкости в объёме параллелепипеда действуют поверхностные силы давления, окружающие жидкость, распределённые по граням параллелепипеда, направленные по внутренним нормалям к граням.
Обозначим p
давление в произвольной точке с
координатами x,
y,
z
на левой вертикальной грани. Учитывая,
что в сплошной жидкой среде давление
есть непрерывная функция координат
точек жидкости и времени p=f(x,y,z,t),
поэтому, в силу сплошности среды и
непрерывности функции давления в точке
на правой грани с координатами (x+dx,
y
,z),
давление равно
с точностью до бесконечно малых второго
порядка.
Разность давлений
будет одинаковой для любой пары выбранных
на этих гранях точек с одинаковыми
координатами y,
z,
при этом проекция на ось OX
результирующей силы давления равна
Скорость движения объёма обозначим через V, а её компоненты – Vx, Vy , Vz. Тогда проекции ускорения, с которым движется объём, равны:
, (16)
Согласно принципу Д’Аламбера, общие уравнения движения идеальной жидкости, могут быть получены из дифференциальных уравнений равновесия той же жидкости, если к действующим силам присоединить силы инерции, которые определяются, как произведение соответствующего ускорения (ax, ay, az) на массу параллелепипеда.
Уравнения движения объёма жидкости в проекциях на координатные оси имеют вид:
(17)
Поделив уравнения
(17) почленно на массу элемента
,
получим:
– (18)
– система дифференциальных уравнений движения идеальной жидкости (система уравнений Эйлера, 1755 г.)
Члены этих уравнений представляют собой соответствующие ускорения, а смысл каждого из уравнений заключается в следующем: полное ускорение частицы вдоль координатной оси складывается из ускорения от массовых сил и ускорения от сил давления.
Рассматривая
установившееся движение жидкости,
умножим каждое уравнение (18) на
соответствующие проекции элементарного
перемещения, равные
и сложим уравнения. Имеем:
.
Учитывая, что выражение в скобках является полным дифференциалом давления, а также, что
.
Получаем:
.
Интегрирование этого уравнения выполним для случая установившегося движения идеальной жидкости, когда на жидкость действует лишь сила тяжести.
При направлении оси Y вертикально вверх: X=0; Y=-g; Z=0, следовательно:
,
следовательно:
.
Для несжимаемой
жидкости
,
уравнение можно переписать в виде:
.
Это уравнение означает, что приращение суммы трех членов, заключенных в скобки, при перемещении частицы жидкости вдоль линии тока (траектории) равно нулю. Следовательно, указанный трехчлен есть величина постоянная вдоль линии тока, а следовательно, и вдоль элементарной струйки, т.е.
–
уравнение Бернулли
для струйки идеальной жидкости.
Для двух сечений элементарной струйки идеальной жидкости можно записать уравнение Бернулли в другой форме:
(19)
(19) – уравнение Бернулли для элементарной струйки идеальной несжимаемой жидкости (1738 г.),
где
-
геометрическая высота или геометрический
напор;
–
пьезометрическая
высота или пьезометрический напор;
–
скоростная высота
или скоростной напор.
Трехчлен вида
- называется полным напором.
Уравнение Бернулли
(19) записано для двух произвольно взятых
сечений струйки и выражает равенство
полных напоров
в
этих сечениях. Так как сечения взяты
произвольно, следовательно, и для любого
другого сечения этой же струйки полный
напор будет иметь то же значение (см.
уравнение (*)):
(вдоль
струйки).
Итак, для идеальной движущейся жидкости сумма трех напоров (высот): геометрического, пьезометрического и скоростного есть величина постоянная вдоль струйки.