Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы-ответы по КМС к экзамену 10 января.doc
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
692.74 Кб
Скачать

25. Понятие корреляции.

Корреля́ция—статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин.Математической мерой корреляции двух случайных величин служит корреляционное отношение, либо коэффициент корреляции ]. В случае, если изменение одной случайной величины не ведёт к закономерному изменению другой случайной величины, но приводит к изменению другой статистической характеристики данной случайной величины, то подобная связь не считается корреляционной, хотя и является статистической

Корреляционным называется исследование, проводимое для подтверждения или опровержения гипотезы о статистической связи между несколькими (двумя и более) переменными.

"Корреляция" в прямом переводе означает "соотношение". Если изменение одной переменной сопровождается изменением другой, то можно говорить о корреляции этих переменных. Наличие корреляции двух переменных ничего не говорит о причинно-следственных зависимостях между ними, но дает возможность выдвинуть такую гипотезу. Отсутствие же корреляции позволяет отвергнуть гипотезу о причинно-следственной связи переменных. Различают несколько интерпретаций наличия корреляционной связи между двумя измерениями:

1. Прямая корреляционная связь. Уровень одной переменной непосредственно соответствует уровню другой. Примером является закон Хика: скорость переработки информации пропорциональна логарифму от числа альтернатив. Другой пример: корреляция высокой личностной пластичности и склонности к смене социальных установок.

2. Корреляция, обусловленная третьей переменной. Две переменные (а, с) связаны одна с другой через третью (в), не измеренную в ходе исследования. По правилу транзитивности, если есть R (а, Ь) и R (Ь, с), то R (а, с). Примером подобной корреляции является установленный психологами США факт связи уровня интеллекта с уровнем доходов. Если бы такое исследование проводилось в сегодняшней России, то результаты были бы иными. Очевидно, все дело в структуре общества. Скорость опознания изображения при быстром предъявлении и словарный запас испытуемых также положительно коррелируют. Скрытой переменной, обусловливающей эту корреляцию, является общий интеллект.3. Случайная корреляция, не обусловленная никакой переменной.4. Корреляция, обусловленная неоднородностью выборки.

26. Коэффициент хи-2. Коэффициенты связи, основные на хи-2.

27. Коэффициент корреляции Пирсона.

27.Коэффициент корреляции Пирсона

Термин «корреляция» был введен в науку выдающимся анг­лийским естествоиспытателем Френсисом Гальтоном в 1886 г. Однако точную формулу для подсчета коэффициента корреля­ции разработал его ученик Карл Пирсон.

Коэффициент характеризует наличие только линейной свя­зи между признаками, обозначаемыми, как правило, символами X и Y. Формула расчета коэффициента корреляции построена таким образом, что, если связь между признаками имеет ли­нейный характер, коэффициент Пирсона точно устанавливает тесноту этой связи. Поэтому он называется также коэффициен­том линейной корреляции Пирсона. Если же связь между пере­менными X и Y не линейна, то Пирсон предложил для оценки тесноты этой связи так называемое корреляционное отношение.

Величина коэффициента линейной корреляции Пирсона не может превышать +1 и быть меньше чем -1. Эти два числа +1 и -1 — являются границами для коэффициента корреляции. Когда при расчете получается величина большая +1 или меньшая -1 — следовательно произошла ошибка в вычислениях.

Знак коэффициента корреляции очень важен для интерпре­тации полученной связи. Подчеркнем еще раз, что если знак ко­эффициента линейной корреляции — плюс, то связь между кор­релирующими признаками такова, что большей величине одного признака (переменной) соответствует большая величина дру­гого признака (другой переменной). Иными словами, если один показатель (переменная) увеличивается, то соответственно уве­личивается и другой показатель (переменная). Такая зависимость носит название прямо пропорциональной зависимости.

Если же получен знак минус, то большей величине одного признака соответствует меньшая величина другого. Иначе гово­ря, при наличии знака минус, увеличению одной переменной (признака, значения) соответствует уменьшение другой пере­менной. Такая зависимость носит название обратно пропорцио­нальной зависимости.

В общем виде формула для подсчета коэффициента корреля­ции такова:

                                                                         (7)

где  хi — значения, принимаемые в выборке X,

yi — значения, принимаемые в выборке Y;

  — средняя по X,    — средняя по Y.

Расчет коэффициента корреляции Пирсона предполагает, что переменные Х и У распределены нормально.

В формуле (7) встречается величина   при делении на n (число значений переменной X или Y) она называется ковариацией. Формула (7) предполагает также, что при расчете коэффициентов корреля­ции число значений переменной Х равно числу значений переменной Y.

Число степеней свободы  k=n-2.

Пример 3. 10 школьникам были даны тесты на наглядно-образное и вербальное мышление. Измерялось среднее время решения заданий теста в секундах. Исследователя интересует вопрос: существует ли вза­имосвязь между временем решения этих задач? Переменная X — обозначает среднее время реше­ния наглядно-образных, а переменная Y— сред­нее время решения вербальных заданий тестов [2].

Решение. Представим исходные данные в виде таблицы 4, в которой введены дополнительные столб­цы, необходимые для расчета по формуле (7).

Таблица 4

№ испытуемых

x

y

хi

i-   )2

yi

(yi-   )2

1

19

17

-16,7

278,89

-7,2

51,84

120,24

2

32

7

-3,7

13,69

-17,2

295,84

63,64

3

33

17

-2,7

7,29

-7,2

51,84

19,44

4

44

28

8,3

68,89

3,8

14,44

31,54

5

28

27

-7,7

59,29

2,8

7,84

-21,56

6

35

31

-0,7

0,49

6,8

46,24

-4,76

7

39

20

3,3

10,89

-4,2

17,64

-13,86

8

39

17

3,3

10,89

-7,2

51,84

-23,76

9

44

35

8,3

68,89

10,8

116,64

89,64

10

44

43

8,3

68,89

18,8

353,44

156,04

Сумма

357

242

 

588,1

 

1007,6

416,6

Среднее

35,7

24,2

 

 

 

 

 

Рассчитываем эмпирическую величину коэффициента корре­ляции по формуле (7):

                                                                          

Определяем критические значения для полученного коэффи­циента корреляции по таблице  Приложения 3. При нахождении критических значений для вычисленного коэффициента линейной корреляции Пирсона число степе­ней свободы рассчитывается как k = n – 2 = 8.

ккрит=0,72 > 0,54 , следовательно, гипотеза Н1 отвергается и при­нимается гипотеза H0, иными словами, связь между временем решения наглядно-образных и вербальных заданий теста не доказана.