Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы-ответы по КМС к экзамену 10 января.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
692.74 Кб
Скачать

13. Порядковая шкала

Измерение в шкале порядка возможно при том условии, что имеется возможность определить не только признаки свойств предмета, но и различие интенсивности признака или свойства. Ранговые измерения характеризуют только порядок расположения предметов по возрастанию или убыванию их свойств. Данный вид измерения использует два свойства чисел – различие их и порядок расположения. Большая часть шкал, широко применяемых в педагогических, социологических, социально-психологических исследованиях, является шкалами порядка.

Шкала порядка является неравномерной. Расстояния между соседними метками шкалы неизвестны. В ранговых измерениях числа приписываются интенсивностям признака предмета таким образом, что если число, присвоенное предмету A, в процессе измерения, меньше числа B, то это значит, что в B содержится больше данного свойства, чем в A.

В порядковых измерениях значения чисел, присваиваемых предметам, отражают количество свойства, принадлежащего предметам. При обработке приписанных баллов используются медиана, индексы, процентные исчисления по всей шкале и ранговая корреляция. При этом следует помнить, что равные суммы и разности чисел не означают равных сумм и разностей в количествах свойств. Для этой шкалы результаты арифметических действий нельзя интерпретировать как свидетельство о количестве свойств.

Примером измерений шкалы порядка может служить ранжирование по индивидуальным чертам личности, ранжирование учащихся по успехам в учении, ранжирование по физическим данным, обозначение твердости минералов, военные ранги, ученые степени и звания, награды за заслуги. Например, мы ранжируем учащихся по росту. В этом случае учащихся ранжируют в порядке роста и каждому присваивают соответственно числа 1, 2, 3, 4, 5, 6, 7, 8, 9.

Следует заметить, что любой ряд чисел, написанных в возрастающем порядке, был бы пригоден (например, числа 27, 30, 33, 36, 39, 42, 45), поскольку нулевая точка отсчета и интервалы между двумя соседними цифрами в порядковых измерениях неизвестны.

Шкала оценок, применяемая в школьной практике, также является порядковой шкалой, так как интервалы между отдельными ступенями, например, пятибалльной системы в целом не отражают разрыва между реальными результатами. Здесь отсутствует равномерность распределения между выставляемыми отметками. Никто не может утверждать, будто различие между отметками «1» и «2» столь же велико, как между «3» и «4» или «4» и «5». Мы узнаем лишь, что ученик X в данном классе лучше ученика Y, а этот, в свою очередь, лучше ученика Z. И эти колебания «больше-меньше» в оценке знаний и результатов отражаются в цифровой отметке. Коль скоро шкала оценок является порядковой шкалой, то мы не имеем права, если не хотим действовать по-научному корректно, вычислять на основании отметок среднюю арифметическую величину, т.е. мы не имеем права выводить среднюю оценку, как это тем не менее делают многие учителя и руководители системы образования на всех уровнях (см. табл. 10).

Таблица 10

Характеристики порядковой шкалы

Свойства шкалы

Различает уровень проявления свойств объекта, не определяет величину различия проявления свойств, не имеет эталона (масштабной единицы)

Область применения

Балльные оценки за учебу, годы обучения, твердость минералов, сила ветра, урагана, землетрясения, место на спортивных соревнованиях, сортность

Статистический аппарат

Частота ni . Мода Mo. Медиана Me. Коэффициент Кендэла. Коэффициент Спирмена