
- •1.1 Основні поняття
- •1.2 Основний закон фільтрації – закон Дарсі
- •1.3 Границі застосування закону Дарсі. Нелінійні закони фільтрації
- •2.2 Основи моделювання процесів фільтрації
- •2.3 Застосування методів теорії подібності й аналізу розмірностей у підземній гідрогазомеханіці
- •Контрольні питання
- •3 Диференціальні рівняння ізотермічної фільтрації флюїдів у пористому середовищі
- •3.1 Виведення рівняння нерозривності фільтраційного потоку
- •3.2 Диференціальні рівняння руху
- •3.3 Залежності параметрів флюїдів і пористого середовища від тиску
- •3.4 Початкові та граничні умови
- •3.5 Виведення узагальненого диференціального рівняння ізотермічної фільтрації пружної рідини чи газу за законом Дарсі в пористому середовищі
- •Контрольні питання
- •4 Усталена фільтрація нестисливої рідини в пористому пласті до галереї і свердловини за законом дарсі
- •4.1 Виведення диференціального рівняння усталеної фільтрації нестисливої рідини в пористому пласті за законом Дарсі
- •4.2 Усталена прямолінійно-паралельна фільтрація нестисливої рідини в пористому пласті за законом Дарсі
- •4.3 Усталена плоско-радіальна фільтрація нестисливої рідини до свердловини в пористому пласті за законом Дарсі
- •Контрольні питання
- •5 Усталена фільтрація нестисливої рідини за нелінійним законом і в неоднорідних пластах
- •5.1 Усталена фільтрація нестисливої рідини за нелінійним законом до свердловини
- •5.2 Усталена фільтрація нестисливої рідини в неоднорідних пористих пластах за законом Дарсі
- •Контрольні питання
- •6 Інтерференція свердловин
- •6.1 Метод джерел і стоків
- •6.2 Метод суперпозиції
- •6.3 Метод розв’язування задач припливу до групи свердловин у пласті з віддаленим контуром живлення
- •6.4 Метод відображення стоків і джерел
- •6.5 Методи комплексного потенціалу та конформних відображень
- •6.6 Метод еквівалентних фільтраційних опорів
- •Контрольні питання
- •7 Приплив рідини до гідродинамічно недосконалих свердловин
- •7.1 Види гідродинамічної недосконалості свердловин та її врахування
- •7.2 Теоретичні дослідження припливу до гідродинамічно недосконалих свердловин за ступенем розкриття пласта
- •7.3 Теоретичні дослідження припливу до недосконалих свердловин за характером розкриття пласта
- •7.4 Дослідження припливу рідини до свердловин з подвійною гідродинамічною недосконалістю
- •Контрольні питання
- •8 Усталена фільтрація газу в пористому пласті
- •8.1 Аналогія усталеної фільтрації стисливих флюїдів з фільтрацією нестисливої рідини в пористому пласті
- •8.2 Прямолінійно-паралельна фільтрація ідеального газу за законом Дарсі
- •8.3 Плоско-радіальна фільтрація ідеального газу за законом Дарсі
- •8.4 Плоско-радіальна фільтрація ідеального газу за двочленним законом
- •8.5 Плоско-радіальна фільтрація реального газу за законом Дарсі
- •8.6 Фільтрація реального газу за нелінійним законом до досконалих і недосконалих свердловин
- •Контрольні питання
- •9 Неусталена фільтрація пружної рідини в пористому пласті
- •9.1 Виведення диференціального рівняння неусталеної фільтрації пружної рідини
- •9.2 Особливості фільтрації рідини в пласті за наявності пружного режиму
- •9.3 Прямолінійно-паралельний потік пружної рідини
- •9.4 Плоско-радіальний потік пружної рідини. Основна формула теорії пружного режиму фільтрації
- •9.5 Метод суперпозиції в задачах пружного режиму
- •9.6 Поняття про наближені методи розв’язування задач пружного режиму
- •Контрольні питання
- •10 Неусталена фільтрація газу в пористому пласті
- •10.1 Виведення диференціальних рівнянь неусталеної фільтрації газу за законом Дарсі
- •10.2 Лінеаризація рівняння Лейбензона. Аналогія між неусталеною фільтрацією пружної рідини й газу
- •10.3 Розв’язування задачі фільтрації газу з допомогою рівняння матеріального балансу
- •Контрольні питання
- •11 Фільтраційні потоки з рухомими межами
- •11.1 Витіснення нафти водою
- •11.2 Стійкість руху межі витіснення
- •11.3 Фільтраційний потік рідини з вільною поверхнею
- •11.4 Конусоутворення підошовної води та верхнього газу
- •12 Основи теорії фільтрації багатофазних систем у пористих пластах
- •12.1 Основні диференціальні рівняння фільтрації багатофазних систем
- •12.2 Узагальнена модель руху двофазних систем
- •12.3 Модель Баклея – Леверетта
- •12.4 Модель Рапопорта - Ліса
- •12.5 Модель Маскета - Мереса
- •12.6 Усталена фільтрація газованої нафти в пористому пласті
- •Контрольні питання
- •13 Витіснення нафти розчином активних домішок
- •13.1 Причини неповноти витіснення нафти водою та фізична суть застосування активних домішок. Поняття активної домішки
- •13.2 Основні рівняння моделі витіснення нафти малоконцентрованим розчином активної домішки
- •13.3 Математична модель адсорбції активної домішки
- •13.4 Аналіз розв’язків задачі витіснення нафти малоконцентрованим розчином активної домішки
- •13.5 Приклади конкретного застосування моделі витіснення нафти розчином активної домішки
- •Контрольні питання
- •14 Основи неізотермічної фільтрації рідин і газів
- •14.1 Теплове поле Землі. Геотерма. Причини неізотермічних умов фільтрації
- •14.2 Диференціальне рівняння енергії пластової системи
- •14.3 Визначення втрат теплоти через покрівлю та підошву пласта
- •14.4 Температурне поле нетеплоізольованого пласта в разі плоско-радіальної фільтрації нестисливої рідини
- •14.5 Температурне поле теплоізольованого пласта під час нагнітання у свердловину гарячої рідини
- •Контрольні питання
- •15 Особливості фільтрації неньютонівських рідин
- •15.1 Порушення закону Дарсі за малих градієнтів тиску
- •15.2 Усталена фільтрація в’язкопластичної нафти
- •15.3 Неусталена фільтрація в’язкопластичної нафти
- •15.4 Вплив аномальних властивостей нафти на охоплення пласта фільтрацією
- •Контрольні питання
- •16 Фільтрація рідин і газів у тріщинуватих і тріщинувато-пористих пластах
- •16.1 Гідродинамічна характеристика тріщинуватих і тріщинувато-пористих пластів
- •16.2 Диференціальні рівняння руху рідини й газу в тріщинуватих і тріщинувато-пористих пластах
- •16.3 Усталена фільтрація нафти в тріщинуватому та тріщинувато-пористому пластах за законом Дарсі
- •16.4 Усталена фільтрація нафти в тріщинуватому та тріщинувато-пористому пластах за нелінійним законом
- •16.5 Усталена фільтрація газу в тріщинуватому та тріщинувато-пористому пластах
- •16.6 Неусталена фільтрація нафти в тріщинуватому та тріщинувато-пористому пластах
- •Контрольні запитання
- •Список літератури
12.4 Модель Рапопорта - Ліса
Модель двофазної фільтрації з урахуванням
капілярних сил називають моделлю
Рапопорта – Ліса. Для одновимірного
витіснення нафти водою без урахування
сили гравітації
таку модель запропонували Л.Рапопорт
і В.Ліс 1953 року (рівняння Рапопорта –
Ліса), тобто
. (12.79)
Якщо в моделі Баклея – Леверетта капілярні сили побічно враховуються через коефіцієнти фазових проникностей, то в моделі Рапопорта – Ліса стрибок капілярного тиску задається у вигляді експериментальної функції насиченості (функції Леверетта).
Модель Баклея – Леверетта, враховуючи фазові проникності для нафти і води, які певним чином залежать від капілярних сил, все-таки не дає змоги описати процеси фільтрації незмішуваних рідин, коли сам рух рідин зумовлюється дією капілярних сил.
Дія капілярних сил проявляється в основному поблизу фронту витіснення, де градієнти насиченості дуже великі. Аналіз показує, що капілярні сили “розмазують” фронт, тому в разі їх урахування стрибок насиченості відсутній, а насиченість водою змінюється безперервно до насиченості зв’язаною водою.
Експериментами було виявлено, що за
постійної швидкості витіснення
розподіл насиченості в перехідній зоні
поблизу фронту витіснення не змінюється
в часі, тобто утворюється так звана
стабілізована зона. Вона переміщається,
не змінюючи своєї форми. Рух у стабілізованій
зоні відповідає граничному розв’язку
рівняння (12.76), коли розподіл насиченості
не залежить від граничних умов. Розподіл
насиченості у стабілізованій зоні є
усталеним (рис. 12.7), тобто не залежить
від часу. Позаду стабілізованої зони
розподіл насиченості описується моделлю
Баклея – Леверетта.
Знайдемо розв’язок рівняння (12.76)
стосовно прямолінійно-паралельного
потоку. Вводимо швидкість руху фронту
витіснення
.
Робимо заміну змінних
, (12.80)
а відтак шукаємо розв’язок (12.76) у вигляді:
. (12.81)
Відповідно до цього перетворюємо рівняння (12.79), знайшовши із рівняння (12.81)
, (12.82)
тобто
. (12.83)
Інтегруючи рівняння (12.83) по u, отримуємо:
, (12.84)
де с – постійна інтегрування.
Оскільки позаду стабілізованої зони зміна насиченості описується моделлю Баклея-Леверетта, а рух у перехідній зоні є усталеним з координатою u, то граничні умови мусять бути такими:
, (12.85)
де sф і s0
– насиченості відповідно за і перед
стрибком насиченості, які пов’язані
між собою співвідношенням (12.67), причому
.
Тоді із рівняння (12.84) знаходимо постійну інтегрування
, (12.86)
а друга умова (12.85) виконується автоматично, так як sф і s0 пов’язані між собою.
Із рівняння (12.84) з урахуванням виразу (12.86) знаходимо
(12.87)
Проінтегрувавши рівняння (12.87) по u
від u1 до u
та відповідно по s від
s1 до s,
де
,
і врахувавши, що
,
отримуємо розв’язок рівняння (12.79) у
вигляді:
. (12.88)
Рівняння (12.88) описує розподіл насиченості в перехідній зоні нескінченної довжини, що є наслідком умов (12.85), а значить відсутні точки змикання отриманого розв’язку з розподілом Баклея-Леверетта.
Якщо взяти значини насиченостей не рівні sф і s0, а близькі до них, то виявляється, що ширина перехідної зони є пропорціональною величині
(12.89)
або
. (12.90)
Зауважуємо, що рівняння (12.76) має також,
окрім розв’язку (12.88), точні автомодельні
розв’язки, які існують за спеціально
вибраної сумарної швидкості
.
Модель Рапопорта - Ліса дає змогу описати процеси фільтрації незмішуваних рідин, коли сам рух рідин зумовлений дією капілярних сил, зокрема процеси прямоплинного та протиплинного капілярного просочування (рис. 12.8).
У разі протиплинного капілярного просочування нафта у взірці гідрофільного пористого середовища, який занурено у воду, під дією капілярних сил заміщається водою, причому рух їх відбувається в протилежних напрямах. Вода входить дрібними порами, а нафта виходить більшими порами, вспливаючи на поверхню води.
У разі прямоплинного капілярного просочування насичений нафтою взірець гідрофільного пористого середовища всмоктує воду з одного кінця, а нафта виходить із взірця через другий кінець. Відзначаємо, що може спостерігатися і комбіноване (прямоплинно - протиплинне) просочування.
Виникає питання про області застосування
моделей Баклея – Леверетта та Рапопорта
– Ліса. Область застосування моделі
Баклея – Леверетта одержується із
моделі Рапопорта – Ліса, коли
.
Величину
називають капілярним числом
(зазначимо, що відомо багато різних
записів капілярного числа). Оскільки
,
то величина в першу чергу визначається характерним розміром L області фільтрації. Оцінимо величину капілярного числа . Приймаємо: = 25 мН/м (для нафти і води); cos = 1; 2 = 2,5 мПас; т = 0,1; k = 10-13 м2; v = 10-5 м/с. Тоді
.
Якщо L = 0,1 м (лабораторний керн чи фронт витіснення), то 1, а в разі L = 102 – 104 м (відстань між свердловинами в пласті) = 10-3 – 10-5. Тобто в разі великомасштабного розгляду двофазної фільтрації між свердловинами можна нехтувати капілярними силами і приймати модель Баклея – Леверетта. Для вивчення розподілу насиченості на фронті витіснення необхідно врахувати капілярні сили, використовуючи модель Рапопорта – Ліса. Звідси випливає, що загально прийнята теорія двофазної фільтрації, в основі якої лежить модель Баклея – Леверетта, є асимптотичною теорією, бо відповідає малим значинам капілярного числа.
Силою гравітації (ваги) можна нехтувати,
якщо
,
оскільки гравітаційне число
,
то цьому відповідає умова
.