
- •Введение
- •1.Системы передачи информации. Способы представления и преобразования сообщений, сигналов и помех.
- •1.1 Общие сведения о системах связи
- •1.1.1 Информация. Сообщение. Сигнал
- •1.1.2 Обобщенная структура систем связи
- •1.1.3 Дискретизация непрерывного сигнала
- •1.2 Методы модуляции в системах связи
- •1.3 .Цифровая обработка аналоговых сигналов
- •1.3.1 Преобразование аналог—цифра. Шумы квантования
- •1.3.2 Преобразование цифра-аналог и восстановление континуального сигнала
- •1.4 Кодирование информации в системах связи
- •1.4.1 Назначение и классификация кодов
- •1.4.2 Неравномерные эффективные коды
- •1.4.3 Принципы помехоустойчивого кодирования
- •1.4.4Линейные двоичные блочные коды
- •1.4.5 Циклические коды
- •1.4.6 Сверточные коды
- •2 Многоканальные системы передачи информации
- •2.1 Уплотнение информации в аналоговых системах связи.
- •2.2 Цифровые системы многоканальной передачи
- •3 Принципы построения систем электросвязи.
- •3.1 Системы телефонной связи.
- •3.1.1 Телефонный аппарат
- •3.1.2 Структура атс, сигнализация, установление соединений (коммутация)
- •3.1.3 Сигнализация
- •3.1.4 Устройства сопряжения
- •3.1.5 Цифровая телефония
- •3.2 Коротковолновые и ультракоротковолновые системы связи
- •3.3.Телевизионные системы
- •3.3.1 Преобразование видеоинформации в сигнал
- •3.3.2 Сообщение и его кодирование
- •3.3.3 Методы цифрового кодирования, используемые при формировании тв программ
- •3.3.4 Цифровая передача сигналов телевидения по линиям связи и иерархия икм систем
- •3.3.5 Цифровое кодирование полных цветовых сигналов pal, secam в аппаратно-студийном комплексе
- •3.3.6 Выбор частоты дискретизации при цифровом кодировании полных цветовых телевизионных сигналов
- •3.3.7 Эффективное цифровое кодирование тв сигнала
- •3.4 Системы подвижной радиосвязи общего пользования
- •3.4.1 Особенности и классификация систем подвижной радиосвязи (спрс)
- •3.4.2 Транкинговые системы
- •3.4.2.1 Преимущества транковых сетей
- •3.4.2.2 Архитектура транкинговых систем
- •3.4.2.2.1 Однозоновые системы
- •3.4.2.2.2. Многозоновые системы
- •3.4.3 Сотовые системы (сспс).
- •3.4.4 Подход к проектированию сспс.
- •3.25 Древовидная сеть
- •3.4.5 Разделение сетей на иерархические уровни.
- •3.4.5.1 Физический уровень.
- •3.4.5.2 Канальный уровень.
- •3.4.5.3 Сетевой уровень.
- •3.4.6 Пути усовершенствования сспс.
- •3.4.7 Повышение надежности.
- •3.4.8 Увеличение скорости передачи.
- •3.4.9 Стандарты сспс.
- •3.5 Спутниковые системы связи
- •3.5.1 Основные параметры спутниковых линий связи
- •3.5.2. Принципы функционирования и обобщённая структурная схема систем спутниковой связи
- •3.5.3. Орбиты спутников связи, способы вывода спутников на орбиту
- •3.5.4 Способы модуляции и формирование групповых сигналов аналоговых и цифровых ссс
- •3.5.5 Способы модуляции
- •3.5.6 Многостанционный доступ (мд).
- •3.5.7 Структура кадра
- •3.5.8 Методы вхождения в синхронизм.
- •3.6 Волоконно-оптические системы связи
- •3.6.1 Оптическое волокно и особенности распространения светового потока в оптическом волокне
- •3.6.2 Методы модуляции светового потока
- •3.6.3 Лазеры и оптическое волокно
- •3.6.4 Структура восс
- •4. Сети связи и системы коммутации
- •4.1 Общие сведения о сетях связи
- •4.1.1 Модель взаимосвязи открытых систем osi / iso
- •4.1.2 Классификация сетей по области действия
- •4.1.2.1 Локальные сети
- •Характеристики лвс
- •4.1.2.2 Городские сети
- •4.1.2.3 Глобальные сети
- •4.2 Особенности современных сетевых архитектур
- •4.2.1Модель ssa компании ibm
- •4.2.2 Базовая модель dna фирмы dec.
- •4.2.3 Сети tcp/ip
- •4.3 Маршрутизазия и управление потоками в сетях связи.
- •4.3.1 Классификация алгоритмов маршрутизации.
- •4.3.2 Типы алгоритмов маршрутизации
- •4.4 Сети интегрального обслуживания
- •Библиографический список
- •394026 Воронеж, Московский просп., 14
1.1.3 Дискретизация непрерывного сигнала
Замена непрерывного сигнала совокупностью выборок (без потери информации) основана на теореме отсчетов (теорема Котельникова): если наивысшая частота в спектре оригинала s(t) меньше чем частота дискретизации Fm, то сигнал s(t) полностью определяется последовательностью своих значений в моменты времени, отстоящие друг от друга не более чем на 1/2Fm сек.
В соответствии с
этой теоремой сигнал s(t),
ограниченный
по спектру наивысшей частотой
,
может быть
представлен рядом
.
(1.3)
В этом выражении l/2Fm =∆t обозначает интервал между двумя отсчетными, a s(n/2Fm) = s(n∆t) — выборки функции s(t) в моменты времени t= n∆t.
Представление заданной функции s(t) рядом (1.3) иллюстрируется рис. 1.8
Рис.1.8. Представление сигнала в виде ряда Котельникова
Функция вида
(1.4)
обладает следующими свойствами:
в точке t = n∆t φn(n∆t) = 1, а в точках t =k, где k — любое целое, положительное или отрицательное число, отличное от п, φn(k∆t) = 0;
спектральная плотность функции φ0(t) равномерна в полосе частот
и равна 1/2Fm=π/Ωm. Так как функция φn(t) отличается от φ0(t) только сдвигом на оси времени на величину n∆t, то спектральная плотность функции φn(t).
. (1.5)
Модуль этой функции изображен на нижней части рис.1.9 (сплошной линией).
Рис.1.9 Связь между
спектром сигнала s(t)
и спектром функции
Ряд (1.3) точно определяет заданный сигнал s(t) в точках отсчета, поскольку коэффициентами ряда являются сами выборки из функции, т. е. величины s(n∆t). Можно доказать, что ряд (1.3) определяет функцию s(t) в любой момент t, а не только в точках отсчета t =n∆t. Воспользуемся для этого общими правилами разложения функции по ортогональной системе. В данном случае разложение производится по функциям вида (1.4), для которых интервал ортогональности равен бесконечности, а норма ||φn||:
.
(1.6)
Применим для определения значений коэффициентов ряда общую формулу, справедливую для обобщенного ряда Фурье:
. (1.7)
Сам обобщенный ряд Фурье представлен коэффициентами:
. (1.8)
При этом исходим из условия, что s(t) — квадратично интегрируемая функция (энергия сигнала конечна).
Для вычисления интеграла в выражении (1.8) воспользуемся формулой , согласно которой
.
(1.9)
Пределы интегрирования
здесь приведены в соответствие с заданной
граничной частотой
в спектре
сигнала s(0),
а также в спектре функции φn(t).
Интеграл в правой части (1.9) с коэффициентом 1/2π есть не что иное, как значение s(t) в момент t = n∆t. Таким образом,
.
(1.10)
Подставляя этот результат в (1.8), получаем окончательное выражение
(1.11)
из которого следует, что коэффициентами ряда (1.3) являются выборки функции s(t) в точках t = n∆t.
Поскольку ограничение спектра конечной наивысшей частотой обеспечивает непрерывность функции s(t), ряд (1.3) сходится к функции s(t) при любом значении t.
Если взять интервал между выборками ∆t' меньшим, чем ∆t=1/2Fm, то ширина 2F'm спектра Ф'n(Ω) функции φ'n(t) будет больше, чем у спектра S(Ω) сигнала s(t) (рис. 1.8), но это не отразится на величине коэффициентов сп. Модуль функции Ф'n(Ω) изображен на рис.1.8 пунктиром.
При увеличении же ∆t'' по сравнению с ∆t спектр Ф''n(Ω) функции φ''n(t) (на рис. 1.8 показан штрих-пунктиром) становится уже, чем спектр сигнала s(t), и при вычислении интеграла в выражении (1.9) пределы интегрирования должны быть (-2πF''m, 2πF''m) вместо (-2πFm, 2πFm). Коэффициенты сn при этом являются уже выборками не заданного сигнала s(t), а некоторой другой функции s1(t), спектр которой ограничен наивысшей частотой F''m.
Итак, сокращение интервалов между выборками по сравнению с величиной 1/2Fm допустимо, но бесполезно. Увеличение же интервала сверх величины 1/2Fm недопустимо.
Рассмотрим теперь случай, когда длительность сигнала s(t) конечна и равна Т, а полоса частот по-прежнему равна Fm. Эти условия, строго говоря, несовместимы, так как функция конечной длительности обладает теоретически бесконечно широким спектром. Практически, однако, всегда можно определить наивысшую частоту спектра Fm так, чтобы «хвосты» функции времени, обусловленные отсеканием частот, превышающих Fm, содержали пренебрежимо малую долю энергии по сравнению с энергией заданного сигнала s(t). При таком допущении, если имеется сигнал длительностью Т с полосой частот Fm, общее число независимых параметров т. е. значений s(n∆t), которое необходимо для полного задания сигнала, очевидно, равно
(1.12)
при
можно считать N
= 2FmT.
При этом
выражение (1.3) принимает следующий вид:
(1.13)
Число N иногда называют числом степеней свободы сигнала s(t) так как даже при произвольном выборе значений s(n∆t) сумма вида (1.13) определяет функцию, удовлетворяющую условиям заданного спектра и заданной длительности сигнала. Число N иногда называют также базой сигнала.
В ряде случаев встречается необходимость представления сигнала с помощью частотных выборок спектральной функции S(Ω), а не временных выборок функции s(t). Для функции S(Ω) можно составить ряд, аналогичный выражению (1.3). Это нетрудно сделать на основании взаимной заменимости переменных t и Ω в преобразованиях Фурье. Применительно к выражению (1.3) это означает, что t должно быть заменено на Ω, 2Ωm на Т, 2Fm на Т/2π; ∆t= 1/2Fт на ∆Ω = 2π /Т. Таким образом получается
(1.14)
Если ранее временной
интервал между двумя соседними выборками
должен был не превышать 2π/2Ωm,то
теперь частотный интервал не должен
превышать 2π/Т.
При ширине спектра 2
Ωm,
охватывающей область частот -Ωm
< Ω
< Ωm,
число выборок равно
как и при представлении сигнала рядом
(1).
В общем случае
выборки
являются
комплексными числами и в каждой отсчетной
точке на оси частот должны быть заданы
два параметра — действительная и мнимая
части
(или модуль и аргумент). Таким образом,
общее число параметров получается вдвое
большим, чем при временном представлении
сигнала, когда выборки
— действительные числа. Избыточность
представления сигнала в частотной
области легко устраняется, если учесть,
что
и
являются
комплексно-сопряженными числами, так
что задание одной из них однозначно
определяет другую. Таким образом,
число независимых
параметров или
степеней
свободы сигнала
равно
,
как и при представлении сигнала во
временной области.
Энергию и среднюю мощность сигнала нетрудно выразить через заданную последовательность временных выборок.
(1.15)
(1.16)
Из последнего выражения видно, что средняя за время Т мощность непрерывного сигнала равна среднему квадрату выборки. Усреднение производится по всем отсчетным точкам, число которых равно 2FmТ.