- •Введение:
- •Строение пав:
- •Катионактивные пав:
- •Амфолитные пав:
- •Неионогенные пав:
- •Применение в быту и нахождение в природе пав:
- •Строение мицелл пав, солюбилизация:
- •Солюбилизация:
- •Эмульгаторы:
- •Концепция гидрофильно-липофильного баланса:
- •Метод глб - приближенный, но простой способ выбора эмульгатора:
- •Подбор эмульгатора методом определения тиф:
- •Различные типы неионных пав как эмульгаторы:
- •Правило Банкрофта и динамика адсорбции пав:
- •Правило Банкрофта и геометрия молекулы поверхностно-активного вещества:
- •Ккм (критическая концентрация мицеллообразования):
- •Число агрегации мицелл:
- •Оптические свойства коллоидных растворов:
- •Ультрамикроскопия:
- •Современные мутномеры:
- •Источники света в нефелометрах:
- •Оптическая геометрия нефелометров:
- •Явление светорассеяния и спектры поглощения вмс:
- •Уравнение Дебая:
- •Уравнение Геллера:
- •Уравнение Ламберта-Бера:
- •Заключение:
- •Влияние пав на здоровье человека и Планеты:
- •Список литературы:
Неионогенные пав:
Неионогенные ПАВ – высокомолекулярные соединения, не образующие ионов в водном растворе. Их растворимость обусловлена наличием в молекулах гидрофильных эфирных и гидроксильных групп, чаще всего полиэтиленгликолевой цепи. При растворении образуются гидраты вследствие образования водородной связи между кислородными атомами полиэтиленгликолевого остатка и молекулами воды. Вследствие разрыва водородной связи при повышении температуры растворимость неионогенных ПАВ уменьшается, поэтому для них точка помутнения - верхний температурный предел мицеллообразования - является важным показателем. Mногие соединения., содержащие подвижной атом H (кислоты, спирты, фенолы, амины), реагируя с этиленоксидом, образуют неионогенные ПАВ RO (C2H4O)nH. Полярность одной оксиэтиленовой группы значительно меньше полярности любой кислотной группы в анионактивных ПАВ. Поэтому для придания молекуле требуемой гидрофильности и значения ГЛБ в зависимости от гидрофобного радикала требуется от 7 до 50 оксиэтиленовых групп. Характерная особенность неионогенных ПАВ - жидкое состояние и малое пенообразование в водных растворах. Неионогенные ПАВ хорошо комбинируются с другими ПАВ и часто включаются в рецептуры моющих средств.
Неионогенные ПАВ разделяют на группы, различающиеся строением гидрофобной части молекулы, в зависимости от того, какие вещества послужили основой получения полигликолевых эфиров. На основе спиртов получают оксиэтилированные спирты RO(C2H4O)nH; на основе карбоновых кислот - оксиэтилированные жирные кислоты RCOO (C2H4O)n H; на основе алкилфенолов и алкилнафтолов -оксиэтилированные алкилфенолы RC6H4O(C2H4O)nH и соединение RC10H6O-— (C2H4O)nH; на основе аминов, амидов, имидазолинов-оксиэтилированные алкиламины RN[(C2H4O)nH]2, соединение RCONH(C2H4O)nH, соединение формулы III; на основе сульфамидов и меркаптанов- ПАВ типа RSO2NC(C2H4O)nH]2 и RS(C2H4O)nH. Отдельную группу составляют проксанолы - блоксополимеры этилен- и пропиленоксидов НО (C2H4O)x (C3H6O)y (C2H4O)z H, где х, у и z варьируют от нескольких единиц до нескольких десятков, и проксамины (тетро-ники; формула IV) - блоксополимеры этилен- и пропиленокси-дов, получаемые в присутствии этилендиамина. Алкилацетиленгликоли служат основой получения ПАВ типа H(OC2H4)n—OCR'R:CCCR'R''O (C2H4O)nH; эфиры фосфорной кислоты-типа (RO)2P(O)O(C2H4O)nH; эфиры пентаэритрита-типа V. Неионогенными ПАВ являются продукты конденсации гликозидов с жирными спиртами, карбоновыми кислотами и этиленоксидом. Выделяют также ПАВ группы сорбиталей (твинов, формула VI)-продукты присоединения этиленоксида к моноэфиру сорбитона и жирной к-ты. Отдельную группу составляют кремнийорганические ПАВ, например (CH3)3Si [OSi (CH3)2]n—(CH2)3O(C2H4O)mH.
Получение неионогенных ПАВ в большинстве случаев основано на реакции присоединения этиленоксида при повышенной температуре под давлением в присутствии катализаторов (0,1-0,5% CH3ONa, KOH или NaOH). При этом получается средне статическое содержание полимергомологов, в которых молекулярно-массовое распределение описывается функцией Пуассона. Индивидуальные вещества получают присоединением к алкоголятам полигалогензамещенных полиэтиленгликолей. Коллоидно-химические свойства ПАВ этого класса изменяются в широких пределах в зависимости от длины гидрофильной полигликолевой цепи и длины цепи гидрофобной части таким образом, что различные представители одного гомологичного ряда могут быть хорошими смачивателями и эмульгаторами. Поверхностное натяжение гомологов оксиэтилированных алкилфенолов и первичных спиртов при постоянном содержании этиленоксидных групп уменьшается в соответствии с правилом Траубе, т. е. с каждой дополнительной группой CH2 поверхностное натяжение снижается. В оптимальном варианте оно может достигать (28-30)· 10-3 Н/м при критической концентрации мицеллообразования. Мицеллярная масса весьма велика; для твинов, напр., она достигает 1800. Неионогенные ПАВ менее чувствительны к солям, обусловливающим жесткость воды, чем анионактивные и катионактивные ПАВ. Смачивающая способность неионогенных ПАВ зависит от структуры; оптимальной смачивающей способностью обладает ПАВ разветвленного строения:
Оксиэтилированные спирты C10-C18 с n от 4 до 9 и плюроники образуют самопроизвольные микроэмульсии масло/вода и вода/масло. Неионогенные ПАВ хорошо совмещаются с другими ПАВ и часто включаются в рецептуры моющих средств.
