
- •Введение:
- •Строение пав:
- •Катионактивные пав:
- •Амфолитные пав:
- •Неионогенные пав:
- •Применение в быту и нахождение в природе пав:
- •Строение мицелл пав, солюбилизация:
- •Солюбилизация:
- •Эмульгаторы:
- •Концепция гидрофильно-липофильного баланса:
- •Метод глб - приближенный, но простой способ выбора эмульгатора:
- •Подбор эмульгатора методом определения тиф:
- •Различные типы неионных пав как эмульгаторы:
- •Правило Банкрофта и динамика адсорбции пав:
- •Правило Банкрофта и геометрия молекулы поверхностно-активного вещества:
- •Ккм (критическая концентрация мицеллообразования):
- •Число агрегации мицелл:
- •Оптические свойства коллоидных растворов:
- •Ультрамикроскопия:
- •Современные мутномеры:
- •Источники света в нефелометрах:
- •Оптическая геометрия нефелометров:
- •Явление светорассеяния и спектры поглощения вмс:
- •Уравнение Дебая:
- •Уравнение Геллера:
- •Уравнение Ламберта-Бера:
- •Заключение:
- •Влияние пав на здоровье человека и Планеты:
- •Список литературы:
Министерство образования и науки Российской Федерации
Калужский филиал
федерального государственного бюджетного образовательного учреждения
высшего профессионального образования
«Московский государственный технический университет имени Н.Э.Баумана»
(КФ МГТУ им. Н.Э. Баумана)
Факультет фундаментальных наук
Кафедра промышленной экологии ФН2-КФ
РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
к курсовому проекту
по дисциплине «Химия окружающей среды»
на тему
«Коллоидные поверхностно – активные вещества»
Выполнила: Санютина Я.А.
Группа ЭКД-61.
Проверил: Мешалкин А.В.
Калуга,2012
Содержание:
1.Введение……………………………………………………………………..3
2.ПАВ и ПИВ………………………………………………………………….5
3.Мицелла и её составляющие……………………………………………….18
3.Оптические свойства коллоидных растворов……………………………..42
4.Уавнение Рэлея……………………………………………………………...43
5.Ультромикроскопия………………………………………………………...46
6.Турбиждиметрия и нефелометрия…………………………………………49
7.Светорассеяние в растворах ВМС…………………………………………56
8.Основные уравнения и законы……………………………………………..58
9.Расчётное задание…………………………………………………………..63
10.Заключение………………………………………………………………...67
11.Список литературы………………………………………………………..71
Введение:
Поверхностно-активные вещества (ПАВ) — химические соединения, которые, концентрируясь на поверхности раздела фаз, вызывают снижение поверхностного натяжения. Основной количественной характеристикой ПАВ является поверхностная активность — способность вещества снижать поверхностное натяжение на границе раздела фаз — это производная поверхностного натяжения по концентрации ПАВ при стремлении С к нулю. Однако, ПАВ имеет предел растворимости (так называемую критическую концентрацию мицеллообразования или ККМ), с достижением которого при добавлении ПАВ в раствор концентрация на границе раздела фаз остается постоянной, но в то же время происходит самоорганизация молекул ПАВ в объёмном растворе (мицеллообразования или агрегация). В результате такой агрегации образуются так называемые мицеллы. Отличительным признаком мицеллообразования служит помутнение раствора ПАВ. Водные растворы ПАВ, при мицеллообразовании также приобретают голубоватый оттенок (студенистый оттенок) за счёт преломления света мицеллами. Типичные ПАВ — органические соединения дифильного строения, т. е. содержащие в молекуле атомные группы, сильно различающиеся по интенсивности взаимодействия с окружающей средой (в наиболее практически важном случае — водой). Так, в молекулах ПАВ имеются один или несколько углеводородных радикалов, составляющих олео- , или липофильную, часть (она же — гидрофобная часть молекулы), и одна или несколько полярных групп — гидрофильная часть. Слабо взаимодействующие с водой олеофильные (гидрофобные) группы определяют стремление молекулы к переходу из водной (полярной) среды в углеводородную (неполярную). Гидрофильные группы, наоборот, удерживают молекулу в полярной среде или, если молекула ПАВ находится в углеводородной жидкости, определяют её стремление к переходу в полярную среду. Поверхностная активность ПАВ, растворённых в неполярных жидкостях, обусловлена гидрофильными группами, а растворённых в воде — гидрофобными радикалами. По типу гидрофильных групп ПАВ делят на ионные, или ионогенные, и неионные, или неионогенные. Ионные ПАВ диссоциируют в воде на ионы, одни из которых обладают адсорбционной (поверхностной) активностью, другие (противоионы) — адсорбционно неактивны. Если адсорбционно активны анионы, ПАВ называются анионными, или анионоактивными, в противоположном случае — катионными, или катионо-активными. Анионные ПАВ — органические кислоты и их соли, катионные — основания, обычно амины различной степени замещения, и их соли. Некоторые ПАВ содержат и кислотные, и основные группы. В зависимости от условий они проявляют свойства или анионных, или катионных ПАВ, поэтому их называют амфотерными, или амфолитными ПАВ. Водные растворы ПАВ поступают в стоки промышленных вод и в конечном счете в водоемы. Из-за низкой скорости разложения ПАВ вредные результаты их воздействия на природу и живые организмы непредсказуемы. Сточные воды, содержащие продукты гидролиза полифосфатных ПАВ, могут вызвать интенсивный рост растений, что приводит к загрязнению ранее чистых водоемов: по мере отмирания растений начинается их гниение, а вода обедняется кислородом, что в свою очередь ухудшает условия существования других форм жизни в воде. Способы очистки сточных вод в отстойниках - перевод ПАВ в пену, адсорбция активным углем - использование ионообменных смол, нейтрализация катионактивными веществами и др. Эти методы дороги и недостаточно эффективны, поэтому предпочтительна очистка сточных вод от ПАВ в отстойниках (аэротенках) и в естественных условиях (в водоемах) путем биологического окисления под действием гетеротрофных бактерий (преобладающий род - Pseudomonas), входящих в состав активного ила. Рост производства ПАВ привел к появлению крупных предприятий, являющихся локальными источниками загрязнения воды. Высококонцентрированные сточные воды этих предприятий могут быть очищены микробиологическим методом, основанным на использовании высокоактивных культур микроорганизмов. Получены штаммы бактерий, разрушающих алкилсульфаты, алкилсульфонаты, алкилбензолсульфонаты, сульфоэтоксилаты и др. Идентифицированы промежуточные продукты распада, которые являются аналогами природных веществ, нетоксичны и не оказывают неблагоприятного воздействия на окружающую среду. Один из важных результатов бактериального расщепления - отсутствие среди промежуточных продуктов распада веществ с явно выраженной дифильностью молекул. Метод дал положительные результаты для сточных вод, содержащих 500 мг/л ПАВ. Эффективность очистки составила 95-97% за время не более 12 часов. Помимо всего этого, ПАВ находят широкое применение в промышленности, сельском хозяйстве, медицине, быту. Важнейшие области потребления ПАВ: производство мыл и моющих средств для технических и санитарно-гигиенических нужд; текстильно-вспомогательных веществ, т. е. веществ, используемых для обработки тканей и подготовки сырья для них; лакокрасочной продукции. ПАВ используют во многих технологических процессах химических, нефтехимических, химико-фармацевтических, пищевой промышленности. Их применяют как присадки, улучшающие качество нефтепродуктов; как флотореагенты при флотационном обогащении полезных ископаемых компоненты гидроизоляционных и антикоррозионных покрытий и т.д. ПАВ облегчают механическую обработку металлов и др. материалов, повышают эффективность процессов диспергирования жидкостей и твёрдых тел. Незаменимы ПАВ, как стабилизаторы высококонцентрированных дисперсных систем (суспензий, паст, эмульсий, пен). Кроме того, они играют важную роль в биологических процессах и вырабатываются для "собственных нужд" живыми организмами. Так, поверхностной активностью обладают вещества, входящие в состав жидкостей кишечно-желудочного тракта и крови животных, соков и экстрактов растений.
ПАВ и ПИВ:
Одним из основных свойств поверхностно-активных веществ является их способность адсорбироваться из объема жидкости, где они растворены, на поверхности этой жидкости. Способность адсорбироваться на поверхности обусловлено тем, что взаимодействие между молекулами поверхностно-активных веществ и молекулами жидкости меньше, чем взаимодействие между молекулами жидкости. Поэтому молекулы поверхностно-активных веществ будут преимущественно выталкиваться из объема жидкости на поверхность. В результате накопления на поверхности жидкости молекул веществ, слабо взаимодействующих с молекулами жидкости, межмолекулярное взаимодействие в поверхностном слое в целом уменьшится, а, следовательно, упадет поверхностное натяжение. Чем больше будет концентрация таких веществ в поверхностном слое, тем меньше будет поверхностное натяжение. Существуют вещества и с противоположными свойствами, так называемые поверхностно-инактивные. Поверхностно-инактивные вещества стремятся уйти с поверхности жидкости. Это происходит потому, что взаимодействие между молекулами поверхностно-инактивных веществ и молекулами жидкости всегда больше, чем взаимодействие между самими молекулами жидкости. Концентрация поверхностно-инактивных веществ в объеме жидкости всегда больше, чем в поверхностном слое, а поверхностное натяжение в их присутствии увеличивается. Есть также вещества, не изменяющие поверхностного натяжения. Относительно воды поверхностно-активными веществами являются многие органические соединения с гетерополярным (дифильным) строением молекул. Обладающая значительным дипольным моментом и хорошо гидратируемая полярная группа (-СООН, - ОН, - NН2, - СН, - СN) являющаяся частью молекулы поверхностно-активного вещества, обусловливает сродство этого вещества к воде, т.е. его растворимость, а гидрофобный радикал, составляющий вторую часть молекулы, является причиной пониженной растворимости этого вещества. Поверхностно-инактивными веществами являются все неорганические электролиты, а также некоторые органические вещества, например, муравьиная, аминоуксусная кислота. Примером вещества, не влияющего на поверхностное натяжение, является сахар. Кривая, характеризующая влияние концентрации вещества на поверхностное натяжение при постоянной температуре, носит название изотермы поверхностного натяжения. На рис.1 приведены изотермы поверхностного натяжения для различных веществ.
Рис.1. Изотермы поверхностного натяжения.
1 – изотерма для поверхностно-активного вещества;
2 – изотерма для поверхностно-инактивного вещества;
3 – изотерма для вещества, не влияющего на поверхностное натяжение.
При повышении концентрации поверхностно-активного вещества поверхностное натяжение сначала падает почти по прямолинейному закону. Затем следует криволинейный участок, что соответствует средним концентрациям поверхностно-активных веществ. При этих концентрациях значительная часть поверхности занята молекулами поверхностно-активного вещества, что снижает дальнейшую его адсорбцию в поверхностном слое. Большим концентрациям на изотерме отвечает почти горизонтальный участок, показывающий, что поверхностное натяжение мало зависит от концентрации и при этих условиях поверхностно-активное вещество образует на поверхности сплошной мономолекулярный слой и дальнейшая адсорбция уже невозможна. При повышении концентрации в жидкости поверхностно-инактивного вещества изотерма полого поднимается. Это объясняется тем, что поверхностно-инактивное вещество, благодаря большому взаимодействию с молекулами воды, уходит в объем жидкости, а на границе раздела фаз имеется лишь сравнительно небольшая часть этого вещества, попадающая туда из объема в результате диффузии, что несколько увеличивает поверхностное натяжение. Наконец, при повышении концентрации веществ, не влияющих на поверхностное натяжение, изотерма представляет собой прямую, параллельную оси концентраций.