
- •Федеральное агентство морского и речного транспорта
- •Ведение
- •Теоретическая (лекционная) часть
- •1. Материаловедение. Особенности атомно-кристаллического строения металлов
- •1.1. Материаловедение. История возникновения и перспективы развития
- •1.2 Металлы, особенности атомно-кристаллического строения
- •1.3 Понятие об изотропии и анизотропии
- •1.4 Аллотропия или полиморфные превращения
- •1.5 Магнитные превращения
- •2. Строение реальных металлов. Дефекты кристаллического строения
- •2.1 Точеные дефекты
- •2.2 Линейные дефекты
- •2.3 Поверхностные дефекты
- •3. Кристаллизации металлов. Методы исследования металлов
- •3.1 Механизм и закономерности кристаллизации металлов
- •3.2 Условия получения мелкозернистой структуры
- •3.3 Строение металлического слитка
- •3.4 Методы исследования металлов: структурные и физические
- •4. Общая теория сплавов. Строение, кристаллизация и свойства сплавов. Диаграмма состояния
- •4.1 Понятие о сплавах и методах их получения
- •4.2 Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений
- •4.3 Кристаллизация сплавов
- •4.4 Диаграмма состояния
- •5. Диаграммы состояния двухкомпонентных сплавов
- •5.1 Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии
- •5.2 Диаграмма состояния сплавов с отсутствием растворимости компонентов в твердом состоянии
- •5.3 Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии
- •5.4 Диаграмма состояния сплавов, компоненты которых образуют химические соединения
- •5.5 Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии
- •5.6 Связь между свойствами сплавов и типом диаграммы состояния
- •6. Нагрузки, напряжения и деформации
- •6.1 Физическая природа деформации металлов
- •6.2 Природа пластической деформации
- •6.3 Дислокационный механизм пластической деформации
- •6.4 Разрушение металлов
- •7. Механические свойства и способы определения их количественных характеристик
- •7.1 Статические испытания на растяжение: гост 1497
- •7.2 Способы определения твердости
- •7.3 Динамические испытания на ударный изгиб (гост 9454)
- •7.4 Испытания на выносливость (гост 2860)
- •8. Технологические и эксплуатационные свойства, их значение
- •8.1 Основные технологические свойства и процессы
- •8.2 Эксплуатационные свойства
- •9. Конструкционная прочность материалов. Особенности деформации поликристаллических тел. Наклеп, возврат и рекристаллизация
- •9.1 Конструкционная прочность материалов
- •9.2 Особенности деформации поликристаллических тел
- •9.3 Влияние пластической деформации на структуру и свойства металла: наклеп
- •9.4 Влияние нагрева на структуру и свойства деформированного металла: возврат и рекристаллизация
- •10. Железоуглеродистые сплавы. Диаграмма состояния железо – углерод
- •10.1 Компоненты и фазы железоуглеродистых сплавов
- •10.2 Процессы структурообразования.
- •10.3 Структуры железоуглеродистых сплавов
- •11. Стали. Классификация и маркировка
- •11.1 Влияние углерода и примесей на свойства сталей
- •11.2 Назначение легирующих элементов
- •11.3 Классификация сталей
- •11.4 Маркировка сталей
- •12. Чугуны. Диаграмма состояния железо – графит. Строение, свойства, классификация и маркировка серых чугунов
- •12.1 Классификация чугунов
- •12.2 Диаграмма состояния железо – графит. Графитизация
- •12.3 Производство чугуна
- •12.4 Строение, свойства, классификация и маркировка серых чугунов
- •13. Виды термической обработки металлов. Основы теории термической обработки стали
- •13.1 Виды термической обработки металлов
- •13.2 Превращения, протекающие в структуре стали при нагреве и охлаждении
- •13.3 Механизм основных превращений
- •1. Превращение перлита в аустенит.
- •2. Превращение аустенита в перлит при медленном охлаждении.
- •3. Промежуточное превращение.
- •4. Превращение аустенита в мартенсит при высоких скоростях охлаждения.
- •5. Превращение мартенсита в перлит.
- •14. Технологические возможности и особенности отжига, нормализации, закалки и отпуска
- •14.1 Основы технологии термической обработки
- •14.2 Отжиг и нормализация. Назначение и режимы.
- •1. Отжиг первого рода.
- •2. Отжиг второго рода.
- •14.3 Технологические особенности и возможности закалки
- •1. Режим нагрева.
- •2. Охлаждение при закалке.
- •3. Способы закалки.
- •14.4 Отпуск и отпускная хрупкость
- •1. Технологические режимы отпуска.
- •2. Отпускная хрупкость.
- •15. Химико-термическая обработка стали: цементация, азотирование, нитроцементация и диффузионная металлизация
- •15.1 Химико-термическая обработка стали
- •15.2 Назначение и технология цементации
- •1. Цементация в твердом карбюризаторе.
- •2. Газовая цементация.
- •3. Структура цементованного слоя.
- •15.3 Назначение и технология азотирования
- •1. Технология азотирования.
- •2. Строение азотированного слоя.
- •15.4 Цианирование и нитроцементация
- •1. Цианирование.
- •2. Нитроцементация.
- •15.5 Диффузионная металлизация
- •16. Методы упрочнения металла
- •16.1 Термомеханическая обработка стали
- •1. Высокотемпературная термомеханическая обработка.
- •2. Низкотемпературная термомеханическая обработка (аусформинг).
- •16.2 Поверхностное упрочнение стальных деталей
- •1. Закалка токами высокой частоты.
- •2. Газопламенная закалка.
- •16.3 Старение
- •16.4 Обработка стали холодом
- •16.5 Упрочнение методом пластической деформации
- •17. Конструкционные материалы. Легированные стали
- •17.1 Конструкционные материалы
- •17.2 Легированные стали
- •17.3 Влияние легирующих элементов на полиморфизм железа
- •17.4 Влияние легирующих элементов на превращения в стали
- •1. Влияние легирующих элементов на превращение перлита в аустенит.
- •3. Влияние легирующих элементов на мартенситное превращение.
- •4. Влияние легирующих элементов на превращения при отпуске.
- •17.5 Классификация легированных сталей
- •18. Конструкционные стали. Классификация конструкционных сталей
- •18.1 Классификация конструкционных сталей
- •18.2 Углеродистые стали
- •18.3 Цементуемые и улучшаемые стали
- •1. Цементуемые стали.
- •2. Улучшаемые стали.
- •18.4 Высокопрочные, пружинные, шарикоподшипниковые, износостойкие и автоматные стали
- •1. Высокопрочные стали.
- •2. Пружинные стали.
- •3. Шарикоподшипниковые стали.
- •4. Стали для изделий, работающих при низких температурах.
- •5. Износостойкие стали.
- •6. Автоматные стали.
- •18.5 Судокорпусные стали
- •19. Инструментальные материалы
- •19.1 Стали для режущего инструмента
- •1. Углеродистые инструментальные стали.
- •2. Легированные инструментальные стали.
- •3. Быстрорежущие стали.
- •19.2 Стали для мерительных инструментов
- •19.3 Штамповые стали
- •1. Стали для штампов холодного деформирования.
- •2. Стали для штампов горячего деформирования.
- •19.4 Твердые сплавы
- •19.5 Алмаз как материал для изготовления инструментов
- •20. Коррозионно-стойкие стали и сплавы. Жаростойкие стали и сплавы. Жаропрочные стали и сплавы
- •20.1 Коррозия: понятие и виды
- •1. Электрохимическая коррозия.
- •2. Химическая коррозия.
- •20.2 Классификация коррозионно-стойких сталей и сплавов
- •20.3 Жаростойкость, жаростойкие стали и сплавы
- •20.4 Жаропрочность, жаропрочные стали и сплавы
- •21. Цветные металлы и сплавы на их основе. Титан и его сплавы. Алюминий и его сплавы. Магний и его сплавы. Медь и ее сплавы
- •21.1 Титан и его сплавы
- •21.2 Алюминий и его сплавы
- •1. Деформируемые сплавы, не упрочняемые термической обработкой.
- •2. Деформируемые сплавы, упрочняемые термической обработкой.
- •3. Литейные алюминиевые сплавы.
- •21.3 Магний и его сплавы
- •1. Деформируемые магниевые сплавы.
- •2. Литейные магниевые сплавы.
- •21.4 Медь и ее сплавы
- •1. Латуни.
- •2. Бронзы.
- •22. Композиционные материалы. Материалы порошковой металлургии: пористые, конструкционные, электротехнические
- •22.1 Композиционные материалы
- •1. Композиционные материалы с нуль-мерным наполнителем.
- •2. Композиционные материалы с одномерными наполнителями.
- •3. Эвтектические композиционные материалы.
- •4. Полимерные композиционные материалы.
- •22.2 Материалы порошковой металлургии
- •1. Пористые порошковые материалы.
- •2. Конструкционные порошковые материалы.
- •3. Спеченные цветные металлы.
- •4. Электротехнические порошковые материалы.
- •23. Неметаллические материалы.
- •23.1 Понятие о неметаллических материалах и классификация полимеров
- •23.2 Классификация пластмасс
- •23.3 Термопластичные пластмассы
- •1. Полиэтилен.
- •2. Полипропилен.
- •3. Полистирол.
- •4. Фторопласт.
- •5. Органическое стекло.
- •6. Пластмассы на основе поливинилхлорида.
- •7. Полиамиды.
- •8. Поликарбонат.
- •23.4 Термореактивные пластмассы
- •1. Пластмассы с порошковыми наполнителями.
- •2. Пластмассы с волокнистыми наполнителями.
- •3. Слоистые пластмассы.
- •4. Газонаполненные пластмассы.
- •23.5 Резиновые материалы
- •1. Свойства резиновых материалов.
- •2. Классификация резиновых материалов.
- •3. Компонентный состав резин.
- •4. Резины общего назначения.
- •5. Резины специального назначения.
- •Практическая часть
- •1. Перечень необходимых для выполнения лабораторных работ по курсу дисциплины «мткм»
- •2. Список источников, рекомендуемых при подготовке к сдаче зачета или экзамена
- •2.1 Библиографические источники
- •2.2 Электронные ресурсы
- •3. Вопросы для подготовки к зачету по дисциплине «мткм»
- •4. Вопросы для подготовки к экзамену по дисциплине «мткм»
- •Библиографический список
- •Приложение
- •Оглавление
- •Курников Александр Серафимович Мизгирев Дмитрий Сергеевич Материаловедение и технология конструкционных материалов
4. Общая теория сплавов. Строение, кристаллизация и свойства сплавов. Диаграмма состояния
4.1 Понятие о сплавах и методах их получения
Под сплавом понимают вещество, полученное сплавлением двух или более элементов. Возможны другие способы приготовления сплавов: спекания, электролиз, возгонка. В этом случае вещества называются псевдосплавами.
Сплав, приготовленный преимущественно из металлических элементов и обладающий металлическими свойствами, называется металлическим сплавом. Сплавы обладают более разнообразным комплексом свойств, которые изменяются в зависимости от состава и метода обработки.
Основные понятия в теории сплавов.
Система – группа тел, выделяемых для наблюдения и изучения.
В металловедении системами являются металлы и металлические сплавы. Чистый металл является простой однокомпонентной системой, сплав – сложной системой, состоящей из двух и более компонентов.
Компоненты – вещества, образующие систему. В качестве компонентов выступают чистые вещества и химические соединения, если они не диссоциируют на составные части в исследуемом интервале температур.
Фаза – однородная часть системы, отделенная от других частей системы поверхностного раздела, при переходе через которую структура и свойства резко меняются.
Вариантность (C) (число степеней свободы) – это число внутренних и внешних факторов (температура, давление, концентрация), которые можно изменять без изменения количества фаз в системе.
Если вариантность C = 1 (моновариантная система), то возможно изменение одного из факторов в некоторых пределах без изменения числа фаз.
Если вариантность C = 0 (нонвариантная система), то внешние факторы изменять нельзя без изменения числа фаз в системе.
Зависимость между числом компонентов (К), числом фаз (Ф) и вариантностью называется правило фаз или закон Гиббса:
Если принять, что все превращения происходят при постоянном давлении, то число переменных уменьшится
где 1 – учитывает возможность изменения температуры.
4.2 Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений
Строение металлического сплава зависит от того, в какие взаимодействия вступают компоненты, составляющие сплав. Почти все металлы в жидком состоянии растворяются друг в друге в любых соотношениях. При образовании сплавов в процессе их затвердевании возможно различное взаимодействие компонентов.
В зависимости от характера взаимодействия компонентов различают сплавы:
- механические смеси;
- химические соединения;
- твердые растворы.
Сплавы механические смеси образуются, когда компоненты не способны к взаимному растворению в твердом состоянии и не вступают в химическую реакцию с образованием соединения.
Образуются между элементами значительно различающимися по строению и свойствам, когда сила взаимодействия между однородными атомами больше, чем между разнородными. Сплав состоит из кристаллов входящих в него компонентов (рис. 4.1). В сплавах сохраняются кристаллические решетки компонентов.
Сплавы химические соединения образуются между элементами, значительно различающимися по строению и свойствам, если сила взаимодействия между разнородными атомами больше, чем между однородными.
а |
б |
Рисунок 4.1 – Схема микроструктуры механической смеси (а) и фактическая микроструктура твердого сплава ТК6 (б) (х200). |
Особенности этих сплавов:
- постоянство состава, то есть сплав образуется при определенном соотношении компонентов, химическое соединение обозначается Аn Вm.;
- образуется специфическая, отличающаяся от решеток элементов, составляющих химическое соединение, кристаллическая решетка с правильным упорядоченным расположением атомов (рис. 4.2 а);
- ярко выраженные индивидуальные свойства;
- постоянство температуры кристаллизации, как у чистых компонентов.
Сплавы твердые растворы – это твердые фазы, в которых соотношения между компонентов могут изменяться. Являются кристаллическими веществами.
а |
б |
Рисунок 4.2 – Схема кристаллической решетки сплава- химического соединения (а) и микроструктура Al4Pd (б) (х10 000). |
Характерной особенностью твердых растворов является наличие в их кристаллической решетке разнородных атомов, при сохранении типа решетки растворителя.
Твердый раствор состоит из однородных зерен (рис. 4.3).
а |
б |
Рисунок 4.3 – Схема микроструктуры сплава- твердого раствора (а) и микроструктура сплава АМц (б) (-твердый раствор Mn в Al) (х500). |
Классификация сплавов твердых растворов.
По степеням растворимости компонентов различают твердые растворы:
- с неограниченной растворимостью компонентов;
- с ограниченной растворимостью компонентов.
При неограниченной растворимости компонентов кристаллическая решетка компонента растворителя по мере увеличения концентрации растворенного компонента плавно переходит в кристаллическую решетку растворенного компонента.
Для образования растворов с неограниченной растворимостью необходимы:
- изоморфность (однотипность) кристаллических решеток компонентов;
- близость атомных радиусов компонентов, которые не должны отличаться более чем на 13 %.
- близость физико-химических свойств подобных по строение валентных оболочек атомов.
При ограниченной растворимости компонентов возможна концентрация растворенного вещества до определенного предела, При дальнейшем увеличении концентрации однородный твердый раствор распадается с образованием двухфазной смеси.
По характеру распределения атомов растворенного вещества в кристаллической решетке растворителя различают растворы:
- замещения;
- внедрения;
- вычитания.
В растворах замещения в кристаллической решетке растворителя часть его атомов замещена атомами растворенного элемента (рис. 4.4 а) расположенными в случайных местах, такие сплавы называют неупорядоченными твердыми растворами.
а |
б |
Рисунок 4.4 – Кристаллическая решетка твердых растворов замещения (а), внедрения (б). |
При образовании растворов замещения периоды решетки изменяются в зависимости от разности атомных диаметров растворенного элемента и растворителя. Если атом растворенного элемента больше атома растворителя, то элементарные ячейки увеличиваются, если меньше – сокращаются. Изменение параметров решетки при образовании твердых растворов определяет изменение свойств. Уменьшение параметра ведет к большему упрочнению, чем его увеличение.
Твердые растворы внедрения образуются внедрением атомов растворенного компонента в поры кристаллической решетки растворителя (рис. 4.4 б).
Образование таких растворов возможно, если атомы растворенного элемента имеют малые размеры. Такими являются элементы, находящиеся в начале периодической системы Менделеева, углерод, водород, азот, бор. Размеры атомов превышают размеры межатомных промежутков в кристаллической решетке металла, это вызывает искажение решетки и в ней возникают напряжения. Концентрация таких растворов не превышает (2…2,5)%.
Твердые растворы вычитания или растворы с дефектной решеткой образуются на базе химических соединений, при этом возможна не только замена одних атомов в узлах кристаллической решетки другими, но и образование пустых, не занятых атомами, узлов в решетке.
К химическому соединению добавляют один из входящих в формулу элементов, его атомы занимают нормальное положение в решетке соединения, а места атомов другого элемента остаются незанятыми.