
- •Федеральное агентство морского и речного транспорта
- •Ведение
- •Теоретическая (лекционная) часть
- •1. Материаловедение. Особенности атомно-кристаллического строения металлов
- •1.1. Материаловедение. История возникновения и перспективы развития
- •1.2 Металлы, особенности атомно-кристаллического строения
- •1.3 Понятие об изотропии и анизотропии
- •1.4 Аллотропия или полиморфные превращения
- •1.5 Магнитные превращения
- •2. Строение реальных металлов. Дефекты кристаллического строения
- •2.1 Точеные дефекты
- •2.2 Линейные дефекты
- •2.3 Поверхностные дефекты
- •3. Кристаллизации металлов. Методы исследования металлов
- •3.1 Механизм и закономерности кристаллизации металлов
- •3.2 Условия получения мелкозернистой структуры
- •3.3 Строение металлического слитка
- •3.4 Методы исследования металлов: структурные и физические
- •4. Общая теория сплавов. Строение, кристаллизация и свойства сплавов. Диаграмма состояния
- •4.1 Понятие о сплавах и методах их получения
- •4.2 Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений
- •4.3 Кристаллизация сплавов
- •4.4 Диаграмма состояния
- •5. Диаграммы состояния двухкомпонентных сплавов
- •5.1 Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии
- •5.2 Диаграмма состояния сплавов с отсутствием растворимости компонентов в твердом состоянии
- •5.3 Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии
- •5.4 Диаграмма состояния сплавов, компоненты которых образуют химические соединения
- •5.5 Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии
- •5.6 Связь между свойствами сплавов и типом диаграммы состояния
- •6. Нагрузки, напряжения и деформации
- •6.1 Физическая природа деформации металлов
- •6.2 Природа пластической деформации
- •6.3 Дислокационный механизм пластической деформации
- •6.4 Разрушение металлов
- •7. Механические свойства и способы определения их количественных характеристик
- •7.1 Статические испытания на растяжение: гост 1497
- •7.2 Способы определения твердости
- •7.3 Динамические испытания на ударный изгиб (гост 9454)
- •7.4 Испытания на выносливость (гост 2860)
- •8. Технологические и эксплуатационные свойства, их значение
- •8.1 Основные технологические свойства и процессы
- •8.2 Эксплуатационные свойства
- •9. Конструкционная прочность материалов. Особенности деформации поликристаллических тел. Наклеп, возврат и рекристаллизация
- •9.1 Конструкционная прочность материалов
- •9.2 Особенности деформации поликристаллических тел
- •9.3 Влияние пластической деформации на структуру и свойства металла: наклеп
- •9.4 Влияние нагрева на структуру и свойства деформированного металла: возврат и рекристаллизация
- •10. Железоуглеродистые сплавы. Диаграмма состояния железо – углерод
- •10.1 Компоненты и фазы железоуглеродистых сплавов
- •10.2 Процессы структурообразования.
- •10.3 Структуры железоуглеродистых сплавов
- •11. Стали. Классификация и маркировка
- •11.1 Влияние углерода и примесей на свойства сталей
- •11.2 Назначение легирующих элементов
- •11.3 Классификация сталей
- •11.4 Маркировка сталей
- •12. Чугуны. Диаграмма состояния железо – графит. Строение, свойства, классификация и маркировка серых чугунов
- •12.1 Классификация чугунов
- •12.2 Диаграмма состояния железо – графит. Графитизация
- •12.3 Производство чугуна
- •12.4 Строение, свойства, классификация и маркировка серых чугунов
- •13. Виды термической обработки металлов. Основы теории термической обработки стали
- •13.1 Виды термической обработки металлов
- •13.2 Превращения, протекающие в структуре стали при нагреве и охлаждении
- •13.3 Механизм основных превращений
- •1. Превращение перлита в аустенит.
- •2. Превращение аустенита в перлит при медленном охлаждении.
- •3. Промежуточное превращение.
- •4. Превращение аустенита в мартенсит при высоких скоростях охлаждения.
- •5. Превращение мартенсита в перлит.
- •14. Технологические возможности и особенности отжига, нормализации, закалки и отпуска
- •14.1 Основы технологии термической обработки
- •14.2 Отжиг и нормализация. Назначение и режимы.
- •1. Отжиг первого рода.
- •2. Отжиг второго рода.
- •14.3 Технологические особенности и возможности закалки
- •1. Режим нагрева.
- •2. Охлаждение при закалке.
- •3. Способы закалки.
- •14.4 Отпуск и отпускная хрупкость
- •1. Технологические режимы отпуска.
- •2. Отпускная хрупкость.
- •15. Химико-термическая обработка стали: цементация, азотирование, нитроцементация и диффузионная металлизация
- •15.1 Химико-термическая обработка стали
- •15.2 Назначение и технология цементации
- •1. Цементация в твердом карбюризаторе.
- •2. Газовая цементация.
- •3. Структура цементованного слоя.
- •15.3 Назначение и технология азотирования
- •1. Технология азотирования.
- •2. Строение азотированного слоя.
- •15.4 Цианирование и нитроцементация
- •1. Цианирование.
- •2. Нитроцементация.
- •15.5 Диффузионная металлизация
- •16. Методы упрочнения металла
- •16.1 Термомеханическая обработка стали
- •1. Высокотемпературная термомеханическая обработка.
- •2. Низкотемпературная термомеханическая обработка (аусформинг).
- •16.2 Поверхностное упрочнение стальных деталей
- •1. Закалка токами высокой частоты.
- •2. Газопламенная закалка.
- •16.3 Старение
- •16.4 Обработка стали холодом
- •16.5 Упрочнение методом пластической деформации
- •17. Конструкционные материалы. Легированные стали
- •17.1 Конструкционные материалы
- •17.2 Легированные стали
- •17.3 Влияние легирующих элементов на полиморфизм железа
- •17.4 Влияние легирующих элементов на превращения в стали
- •1. Влияние легирующих элементов на превращение перлита в аустенит.
- •3. Влияние легирующих элементов на мартенситное превращение.
- •4. Влияние легирующих элементов на превращения при отпуске.
- •17.5 Классификация легированных сталей
- •18. Конструкционные стали. Классификация конструкционных сталей
- •18.1 Классификация конструкционных сталей
- •18.2 Углеродистые стали
- •18.3 Цементуемые и улучшаемые стали
- •1. Цементуемые стали.
- •2. Улучшаемые стали.
- •18.4 Высокопрочные, пружинные, шарикоподшипниковые, износостойкие и автоматные стали
- •1. Высокопрочные стали.
- •2. Пружинные стали.
- •3. Шарикоподшипниковые стали.
- •4. Стали для изделий, работающих при низких температурах.
- •5. Износостойкие стали.
- •6. Автоматные стали.
- •18.5 Судокорпусные стали
- •19. Инструментальные материалы
- •19.1 Стали для режущего инструмента
- •1. Углеродистые инструментальные стали.
- •2. Легированные инструментальные стали.
- •3. Быстрорежущие стали.
- •19.2 Стали для мерительных инструментов
- •19.3 Штамповые стали
- •1. Стали для штампов холодного деформирования.
- •2. Стали для штампов горячего деформирования.
- •19.4 Твердые сплавы
- •19.5 Алмаз как материал для изготовления инструментов
- •20. Коррозионно-стойкие стали и сплавы. Жаростойкие стали и сплавы. Жаропрочные стали и сплавы
- •20.1 Коррозия: понятие и виды
- •1. Электрохимическая коррозия.
- •2. Химическая коррозия.
- •20.2 Классификация коррозионно-стойких сталей и сплавов
- •20.3 Жаростойкость, жаростойкие стали и сплавы
- •20.4 Жаропрочность, жаропрочные стали и сплавы
- •21. Цветные металлы и сплавы на их основе. Титан и его сплавы. Алюминий и его сплавы. Магний и его сплавы. Медь и ее сплавы
- •21.1 Титан и его сплавы
- •21.2 Алюминий и его сплавы
- •1. Деформируемые сплавы, не упрочняемые термической обработкой.
- •2. Деформируемые сплавы, упрочняемые термической обработкой.
- •3. Литейные алюминиевые сплавы.
- •21.3 Магний и его сплавы
- •1. Деформируемые магниевые сплавы.
- •2. Литейные магниевые сплавы.
- •21.4 Медь и ее сплавы
- •1. Латуни.
- •2. Бронзы.
- •22. Композиционные материалы. Материалы порошковой металлургии: пористые, конструкционные, электротехнические
- •22.1 Композиционные материалы
- •1. Композиционные материалы с нуль-мерным наполнителем.
- •2. Композиционные материалы с одномерными наполнителями.
- •3. Эвтектические композиционные материалы.
- •4. Полимерные композиционные материалы.
- •22.2 Материалы порошковой металлургии
- •1. Пористые порошковые материалы.
- •2. Конструкционные порошковые материалы.
- •3. Спеченные цветные металлы.
- •4. Электротехнические порошковые материалы.
- •23. Неметаллические материалы.
- •23.1 Понятие о неметаллических материалах и классификация полимеров
- •23.2 Классификация пластмасс
- •23.3 Термопластичные пластмассы
- •1. Полиэтилен.
- •2. Полипропилен.
- •3. Полистирол.
- •4. Фторопласт.
- •5. Органическое стекло.
- •6. Пластмассы на основе поливинилхлорида.
- •7. Полиамиды.
- •8. Поликарбонат.
- •23.4 Термореактивные пластмассы
- •1. Пластмассы с порошковыми наполнителями.
- •2. Пластмассы с волокнистыми наполнителями.
- •3. Слоистые пластмассы.
- •4. Газонаполненные пластмассы.
- •23.5 Резиновые материалы
- •1. Свойства резиновых материалов.
- •2. Классификация резиновых материалов.
- •3. Компонентный состав резин.
- •4. Резины общего назначения.
- •5. Резины специального назначения.
- •Практическая часть
- •1. Перечень необходимых для выполнения лабораторных работ по курсу дисциплины «мткм»
- •2. Список источников, рекомендуемых при подготовке к сдаче зачета или экзамена
- •2.1 Библиографические источники
- •2.2 Электронные ресурсы
- •3. Вопросы для подготовки к зачету по дисциплине «мткм»
- •4. Вопросы для подготовки к экзамену по дисциплине «мткм»
- •Библиографический список
- •Приложение
- •Оглавление
- •Курников Александр Серафимович Мизгирев Дмитрий Сергеевич Материаловедение и технология конструкционных материалов
23.5 Резиновые материалы
Резиновые материалы представляют собой сложную смесь разнообразных компонентов, основным из которых является продукт вулканизации каучука.
1. Свойства резиновых материалов.
Материалы обладают следующими достоинствами:
- высокой эластичностью в широких интервалах температур;
- хорошей вибростойкостью (способностью поглощать колебания);
- повышенной химической стойкостью;
- стойкостью к истиранию;
- хорошими диэлектрическими свойствами и т. д.
Недостатками резиновых материалов являются: относительно низкая тепло- и морозостойкость, склонность к старению под воздействием тепла, кислорода воздуха и света. Кроме того, резина содержит свободную серу, а последняя с течением времени выделяется и вызывает коррозию контактирующих с ней металлов.
2. Классификация резиновых материалов.
По назначению различают следующие группы резины:
Общего назначения;
Специального назначения (теплостойкие, морозостойкие, маслобензостойкие, стойкие к действию химически агрессивных сред (в том числе стойкие к гидравлическим жидкостям), диэлектрические, электропроводящие, магнитные, огнестойкие, радиационностойкие, вакуумные, фрикционные (износостойкие), пищевого и медицинского назначения, для условий тропического и другого климата).
По типам:
- пористые, или губчатые резины;
- цветные и прозрачные резины.
3. Компонентный состав резин.
Изделия изготовляются из резиновых смесей, в состав которых входят следующие компоненты: каучук, вулканизующие, вещества, ускорители вулканизации, наполнители, противостарители, мягчители, регенерат и красители.
Каучук — основа резиновых смесей, определяющая основные физико-химические и механические свойства резин. Содержаний каучука в смесях (5…92) %. В настоящее время в промышленности применяют натуральный каучук растительного происхождения и каучуки, получаемые химическим путем (синтетические).
Из синтетических каучуков наиболее распространены натрий-бутадиеновый, бутадиенстирольный, бутадиеннитрильный, силиконовый, хлоропреновый, полиизопреновый.
Вулканизация — это физико-химический процесс взаимодействия каучука с вулканизующим веществом, в результате которого происходит изменение свойств каучука: он теряет пластичность, становится эластичным, увеличивается прочность, стойкость к действию химических веществ. Важнейшим вулканизующим веществом является сера. Изменяя содержание серы в составе резиновых смесей, можно получать резину с различной степенью эластичности. Так, например, для получения мягких резин в состав смеси вводят (1…3)% серы; полутвердых резин — около 10 %, а твердых резин (эбонита) — (30…40) %.
Для сокращения времени вулканизации вводят химические вещества, называемые ускорителями вулканизации.
Наполнители — порошкообразные материалы разделяются на активные и неактивные. К активным наполнителям относятся: ламповая, газовая, форсуночная сажи, каолин, цинковые белила (окись цинка и др.). Эти вещества в количестве (45…60) %, значительно повышают прочность при разрыве, сопротивление истиранию и др. механические характеристики. Неактивные наполнители вводят главным образом для удешевления резин. В качестве неактивных наполнителей используют мел, тальк, барий.
Мягчители — вещества, предназначенные для облегчения перемешивания каучука с порошкообразными составляющими и придания резине мягкости. В качестве мягчителей, вводимых в количестве (2…5) %, применяют вазелин, вазелиновое масло, стеарин, парафин, мазут, канифоль, дибутилфталат и др.
Противостарители применяют для предохранения резиновых изделий от старения, которое появляется в основном в результате длительной эксплуатации под действием высоких температур, солнечных лучей и механических воздействий.
В качестве противостарителей применяют сложные органические вещества в количестве (1…2) %.
Регенерат— продукт переработки старых резиновых изделий, заменяет каучук, дешевле его. В смесях, содержащих регенерат, составляющие распределяются быстрее и лучше, чем в чистом каучуке. При введении регенерата резиновые изделия значительно удешевляются и повышается их пластичность.
Красители служат для окраски резины (окись титана, родамин, сурик, ультрамарин и др.).