
- •Федеральное агентство морского и речного транспорта
- •Ведение
- •Теоретическая (лекционная) часть
- •1. Материаловедение. Особенности атомно-кристаллического строения металлов
- •1.1. Материаловедение. История возникновения и перспективы развития
- •1.2 Металлы, особенности атомно-кристаллического строения
- •1.3 Понятие об изотропии и анизотропии
- •1.4 Аллотропия или полиморфные превращения
- •1.5 Магнитные превращения
- •2. Строение реальных металлов. Дефекты кристаллического строения
- •2.1 Точеные дефекты
- •2.2 Линейные дефекты
- •2.3 Поверхностные дефекты
- •3. Кристаллизации металлов. Методы исследования металлов
- •3.1 Механизм и закономерности кристаллизации металлов
- •3.2 Условия получения мелкозернистой структуры
- •3.3 Строение металлического слитка
- •3.4 Методы исследования металлов: структурные и физические
- •4. Общая теория сплавов. Строение, кристаллизация и свойства сплавов. Диаграмма состояния
- •4.1 Понятие о сплавах и методах их получения
- •4.2 Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений
- •4.3 Кристаллизация сплавов
- •4.4 Диаграмма состояния
- •5. Диаграммы состояния двухкомпонентных сплавов
- •5.1 Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии
- •5.2 Диаграмма состояния сплавов с отсутствием растворимости компонентов в твердом состоянии
- •5.3 Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии
- •5.4 Диаграмма состояния сплавов, компоненты которых образуют химические соединения
- •5.5 Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии
- •5.6 Связь между свойствами сплавов и типом диаграммы состояния
- •6. Нагрузки, напряжения и деформации
- •6.1 Физическая природа деформации металлов
- •6.2 Природа пластической деформации
- •6.3 Дислокационный механизм пластической деформации
- •6.4 Разрушение металлов
- •7. Механические свойства и способы определения их количественных характеристик
- •7.1 Статические испытания на растяжение: гост 1497
- •7.2 Способы определения твердости
- •7.3 Динамические испытания на ударный изгиб (гост 9454)
- •7.4 Испытания на выносливость (гост 2860)
- •8. Технологические и эксплуатационные свойства, их значение
- •8.1 Основные технологические свойства и процессы
- •8.2 Эксплуатационные свойства
- •9. Конструкционная прочность материалов. Особенности деформации поликристаллических тел. Наклеп, возврат и рекристаллизация
- •9.1 Конструкционная прочность материалов
- •9.2 Особенности деформации поликристаллических тел
- •9.3 Влияние пластической деформации на структуру и свойства металла: наклеп
- •9.4 Влияние нагрева на структуру и свойства деформированного металла: возврат и рекристаллизация
- •10. Железоуглеродистые сплавы. Диаграмма состояния железо – углерод
- •10.1 Компоненты и фазы железоуглеродистых сплавов
- •10.2 Процессы структурообразования.
- •10.3 Структуры железоуглеродистых сплавов
- •11. Стали. Классификация и маркировка
- •11.1 Влияние углерода и примесей на свойства сталей
- •11.2 Назначение легирующих элементов
- •11.3 Классификация сталей
- •11.4 Маркировка сталей
- •12. Чугуны. Диаграмма состояния железо – графит. Строение, свойства, классификация и маркировка серых чугунов
- •12.1 Классификация чугунов
- •12.2 Диаграмма состояния железо – графит. Графитизация
- •12.3 Производство чугуна
- •12.4 Строение, свойства, классификация и маркировка серых чугунов
- •13. Виды термической обработки металлов. Основы теории термической обработки стали
- •13.1 Виды термической обработки металлов
- •13.2 Превращения, протекающие в структуре стали при нагреве и охлаждении
- •13.3 Механизм основных превращений
- •1. Превращение перлита в аустенит.
- •2. Превращение аустенита в перлит при медленном охлаждении.
- •3. Промежуточное превращение.
- •4. Превращение аустенита в мартенсит при высоких скоростях охлаждения.
- •5. Превращение мартенсита в перлит.
- •14. Технологические возможности и особенности отжига, нормализации, закалки и отпуска
- •14.1 Основы технологии термической обработки
- •14.2 Отжиг и нормализация. Назначение и режимы.
- •1. Отжиг первого рода.
- •2. Отжиг второго рода.
- •14.3 Технологические особенности и возможности закалки
- •1. Режим нагрева.
- •2. Охлаждение при закалке.
- •3. Способы закалки.
- •14.4 Отпуск и отпускная хрупкость
- •1. Технологические режимы отпуска.
- •2. Отпускная хрупкость.
- •15. Химико-термическая обработка стали: цементация, азотирование, нитроцементация и диффузионная металлизация
- •15.1 Химико-термическая обработка стали
- •15.2 Назначение и технология цементации
- •1. Цементация в твердом карбюризаторе.
- •2. Газовая цементация.
- •3. Структура цементованного слоя.
- •15.3 Назначение и технология азотирования
- •1. Технология азотирования.
- •2. Строение азотированного слоя.
- •15.4 Цианирование и нитроцементация
- •1. Цианирование.
- •2. Нитроцементация.
- •15.5 Диффузионная металлизация
- •16. Методы упрочнения металла
- •16.1 Термомеханическая обработка стали
- •1. Высокотемпературная термомеханическая обработка.
- •2. Низкотемпературная термомеханическая обработка (аусформинг).
- •16.2 Поверхностное упрочнение стальных деталей
- •1. Закалка токами высокой частоты.
- •2. Газопламенная закалка.
- •16.3 Старение
- •16.4 Обработка стали холодом
- •16.5 Упрочнение методом пластической деформации
- •17. Конструкционные материалы. Легированные стали
- •17.1 Конструкционные материалы
- •17.2 Легированные стали
- •17.3 Влияние легирующих элементов на полиморфизм железа
- •17.4 Влияние легирующих элементов на превращения в стали
- •1. Влияние легирующих элементов на превращение перлита в аустенит.
- •3. Влияние легирующих элементов на мартенситное превращение.
- •4. Влияние легирующих элементов на превращения при отпуске.
- •17.5 Классификация легированных сталей
- •18. Конструкционные стали. Классификация конструкционных сталей
- •18.1 Классификация конструкционных сталей
- •18.2 Углеродистые стали
- •18.3 Цементуемые и улучшаемые стали
- •1. Цементуемые стали.
- •2. Улучшаемые стали.
- •18.4 Высокопрочные, пружинные, шарикоподшипниковые, износостойкие и автоматные стали
- •1. Высокопрочные стали.
- •2. Пружинные стали.
- •3. Шарикоподшипниковые стали.
- •4. Стали для изделий, работающих при низких температурах.
- •5. Износостойкие стали.
- •6. Автоматные стали.
- •18.5 Судокорпусные стали
- •19. Инструментальные материалы
- •19.1 Стали для режущего инструмента
- •1. Углеродистые инструментальные стали.
- •2. Легированные инструментальные стали.
- •3. Быстрорежущие стали.
- •19.2 Стали для мерительных инструментов
- •19.3 Штамповые стали
- •1. Стали для штампов холодного деформирования.
- •2. Стали для штампов горячего деформирования.
- •19.4 Твердые сплавы
- •19.5 Алмаз как материал для изготовления инструментов
- •20. Коррозионно-стойкие стали и сплавы. Жаростойкие стали и сплавы. Жаропрочные стали и сплавы
- •20.1 Коррозия: понятие и виды
- •1. Электрохимическая коррозия.
- •2. Химическая коррозия.
- •20.2 Классификация коррозионно-стойких сталей и сплавов
- •20.3 Жаростойкость, жаростойкие стали и сплавы
- •20.4 Жаропрочность, жаропрочные стали и сплавы
- •21. Цветные металлы и сплавы на их основе. Титан и его сплавы. Алюминий и его сплавы. Магний и его сплавы. Медь и ее сплавы
- •21.1 Титан и его сплавы
- •21.2 Алюминий и его сплавы
- •1. Деформируемые сплавы, не упрочняемые термической обработкой.
- •2. Деформируемые сплавы, упрочняемые термической обработкой.
- •3. Литейные алюминиевые сплавы.
- •21.3 Магний и его сплавы
- •1. Деформируемые магниевые сплавы.
- •2. Литейные магниевые сплавы.
- •21.4 Медь и ее сплавы
- •1. Латуни.
- •2. Бронзы.
- •22. Композиционные материалы. Материалы порошковой металлургии: пористые, конструкционные, электротехнические
- •22.1 Композиционные материалы
- •1. Композиционные материалы с нуль-мерным наполнителем.
- •2. Композиционные материалы с одномерными наполнителями.
- •3. Эвтектические композиционные материалы.
- •4. Полимерные композиционные материалы.
- •22.2 Материалы порошковой металлургии
- •1. Пористые порошковые материалы.
- •2. Конструкционные порошковые материалы.
- •3. Спеченные цветные металлы.
- •4. Электротехнические порошковые материалы.
- •23. Неметаллические материалы.
- •23.1 Понятие о неметаллических материалах и классификация полимеров
- •23.2 Классификация пластмасс
- •23.3 Термопластичные пластмассы
- •1. Полиэтилен.
- •2. Полипропилен.
- •3. Полистирол.
- •4. Фторопласт.
- •5. Органическое стекло.
- •6. Пластмассы на основе поливинилхлорида.
- •7. Полиамиды.
- •8. Поликарбонат.
- •23.4 Термореактивные пластмассы
- •1. Пластмассы с порошковыми наполнителями.
- •2. Пластмассы с волокнистыми наполнителями.
- •3. Слоистые пластмассы.
- •4. Газонаполненные пластмассы.
- •23.5 Резиновые материалы
- •1. Свойства резиновых материалов.
- •2. Классификация резиновых материалов.
- •3. Компонентный состав резин.
- •4. Резины общего назначения.
- •5. Резины специального назначения.
- •Практическая часть
- •1. Перечень необходимых для выполнения лабораторных работ по курсу дисциплины «мткм»
- •2. Список источников, рекомендуемых при подготовке к сдаче зачета или экзамена
- •2.1 Библиографические источники
- •2.2 Электронные ресурсы
- •3. Вопросы для подготовки к зачету по дисциплине «мткм»
- •4. Вопросы для подготовки к экзамену по дисциплине «мткм»
- •Библиографический список
- •Приложение
- •Оглавление
- •Курников Александр Серафимович Мизгирев Дмитрий Сергеевич Материаловедение и технология конструкционных материалов
14.2 Отжиг и нормализация. Назначение и режимы.
Отжиг снижает твердость, повышает пластичность и вязкость за счет получения равновесной мелкозернистой структуры и позволяет:
- улучшить обрабатываемость заготовок давлением и резанием;
- исправить структуру сварных швов, перегретой при обработке давлением и литье стали;
|
Рисунок 14.1 – Левый угол диаграммы состояния железо – цементит и температурные области нагрева при термической обработке сталей. |
- подготовить структуру к последующей обработке.
Характерно медленное охлаждение со скоростью (30…100) С/ч.
1. Отжиг первого рода.
1. Диффузионный (гомогенизирующий) отжиг.
Применяется для устранения ликвации. В результате нагрева выравнивается состав, растворяются избыточные карбиды.
Применяется, в основном, для легированных сталей.
Температура нагрева зависит от температуры плавления (Тпл):
ТН = 0,8Тпл.
Продолжительность выдержки: = (8…20) часов.
2. Рекристаллизационный отжиг.
Проводится для снятия напряжений после холодной пластической деформации.
Температура нагрева связана с температурой плавления:
ТН = 0,4Тпл
Продолжительность процесса зависит от габаритов изделия.
3. Отжиг для снятия напряжений после горячей обработки (литья, сварки) и обработки резанием.
Применяется для деталей, требующих высокой точности размеров, не изменяемых во времени.
Температура нагрева выбирается в зависимости от назначения, находится в широком диапазоне: ТН = (160 … 700) С.
Режим зависит от габаритов изделия.
2. Отжиг второго рода.
Предназначен для изменения фазового состава.
Температура нагрева и время выдержки обеспечивают нужные структурные превращения. Скорость охлаждения должна быть такой, чтобы успели произойти обратные фазовые превращения.
Является подготовительной операцией, которой подвергают отливки, поковки, прокат. Отжиг снижает твердость и прочность, улучшает обрабатываемость резанием средне- и высокоуглеродистых сталей.
В зависимости от температуры нагрева различают отжиг:
1. Полный, с температурой нагрева на (30…50) С выше критической температуры А3:
ТН = А3 + (30…50) С
Проводится для доэвтектоидных сталей для исправления структуры. При такой температуре нагрева аустенит получается мелкозернистый, и после охлаждения сталь имеет также мелкозернистую структуру.
2. Неполный, с температурой нагрева на (30…50) С выше критической температуры А1
ТН = А1 + (30…50) С
Применяется для заэвтектоидных сталей. При таком нагреве в структуре сохраняется цементит вторичный, в результате отжига цементит приобретает сферическую форму. Структура с зернистым цементитом лучше обрабатывается. Неполный отжиг является обязательным для инструментальных сталей.
3. Циклический или маятниковый отжиг применяют, если после проведения неполного отжига цементит остается пластинчатым.
После нагрева выше температуры А1 следует охлаждение до 680 С, затем снова нагрев до температуры (750…760) С и охлаждение. В результате получают зернистый цементит.
4. Изотермический отжиг – после нагрева до требуемой температуры изделие быстро охлаждают до температуры на (50…100) С ниже критической температуры А1 и выдерживают до полного превращения аустенита в перлит, затем охлаждают на спокойном воздухе.
В результате получают более однородную структуру, так как превращение происходит при одинаковой степени переохлаждения. Значительно сокращается длительность процесса. Применяют для легированных сталей.
3. Нормализация – разновидность отжига.
Термическая обработка, при которой изделие нагревают до аустенитного состояния на (30…50) С выше А3 или Асm с последующим охлаждением на воздухе.
ТН = А3 + (30…50) С
или
ТН = Аcm + (30…50) С
В результате нормализации получают более тонкое строение эвтектоида (тонкий перлит или сорбит), уменьшаются внутренние напряжения, устраняются пороки, полученные в процессе предшествующей обработки. Твердость и прочность несколько выше чем после отжига.
Нормализацию чаще применяют как промежуточную операцию, улучшающую структуру. Иногда проводят как окончательную обработку (при изготовлении сортового проката).
В заэвтектоидных сталях нормализация устраняет грубую сетку вторичного цементита.
Для низкоуглеродистых сталей нормализацию применяют вместо отжига.
Для среднеуглеродистых сталей нормализацию или нормализацию с высоким отпуском применяют вместо закалки с высоким отпуском.