
- •Федеральное агентство морского и речного транспорта
- •Ведение
- •Теоретическая (лекционная) часть
- •1. Материаловедение. Особенности атомно-кристаллического строения металлов
- •1.1. Материаловедение. История возникновения и перспективы развития
- •1.2 Металлы, особенности атомно-кристаллического строения
- •1.3 Понятие об изотропии и анизотропии
- •1.4 Аллотропия или полиморфные превращения
- •1.5 Магнитные превращения
- •2. Строение реальных металлов. Дефекты кристаллического строения
- •2.1 Точеные дефекты
- •2.2 Линейные дефекты
- •2.3 Поверхностные дефекты
- •3. Кристаллизации металлов. Методы исследования металлов
- •3.1 Механизм и закономерности кристаллизации металлов
- •3.2 Условия получения мелкозернистой структуры
- •3.3 Строение металлического слитка
- •3.4 Методы исследования металлов: структурные и физические
- •4. Общая теория сплавов. Строение, кристаллизация и свойства сплавов. Диаграмма состояния
- •4.1 Понятие о сплавах и методах их получения
- •4.2 Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений
- •4.3 Кристаллизация сплавов
- •4.4 Диаграмма состояния
- •5. Диаграммы состояния двухкомпонентных сплавов
- •5.1 Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии
- •5.2 Диаграмма состояния сплавов с отсутствием растворимости компонентов в твердом состоянии
- •5.3 Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии
- •5.4 Диаграмма состояния сплавов, компоненты которых образуют химические соединения
- •5.5 Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии
- •5.6 Связь между свойствами сплавов и типом диаграммы состояния
- •6. Нагрузки, напряжения и деформации
- •6.1 Физическая природа деформации металлов
- •6.2 Природа пластической деформации
- •6.3 Дислокационный механизм пластической деформации
- •6.4 Разрушение металлов
- •7. Механические свойства и способы определения их количественных характеристик
- •7.1 Статические испытания на растяжение: гост 1497
- •7.2 Способы определения твердости
- •7.3 Динамические испытания на ударный изгиб (гост 9454)
- •7.4 Испытания на выносливость (гост 2860)
- •8. Технологические и эксплуатационные свойства, их значение
- •8.1 Основные технологические свойства и процессы
- •8.2 Эксплуатационные свойства
- •9. Конструкционная прочность материалов. Особенности деформации поликристаллических тел. Наклеп, возврат и рекристаллизация
- •9.1 Конструкционная прочность материалов
- •9.2 Особенности деформации поликристаллических тел
- •9.3 Влияние пластической деформации на структуру и свойства металла: наклеп
- •9.4 Влияние нагрева на структуру и свойства деформированного металла: возврат и рекристаллизация
- •10. Железоуглеродистые сплавы. Диаграмма состояния железо – углерод
- •10.1 Компоненты и фазы железоуглеродистых сплавов
- •10.2 Процессы структурообразования.
- •10.3 Структуры железоуглеродистых сплавов
- •11. Стали. Классификация и маркировка
- •11.1 Влияние углерода и примесей на свойства сталей
- •11.2 Назначение легирующих элементов
- •11.3 Классификация сталей
- •11.4 Маркировка сталей
- •12. Чугуны. Диаграмма состояния железо – графит. Строение, свойства, классификация и маркировка серых чугунов
- •12.1 Классификация чугунов
- •12.2 Диаграмма состояния железо – графит. Графитизация
- •12.3 Производство чугуна
- •12.4 Строение, свойства, классификация и маркировка серых чугунов
- •13. Виды термической обработки металлов. Основы теории термической обработки стали
- •13.1 Виды термической обработки металлов
- •13.2 Превращения, протекающие в структуре стали при нагреве и охлаждении
- •13.3 Механизм основных превращений
- •1. Превращение перлита в аустенит.
- •2. Превращение аустенита в перлит при медленном охлаждении.
- •3. Промежуточное превращение.
- •4. Превращение аустенита в мартенсит при высоких скоростях охлаждения.
- •5. Превращение мартенсита в перлит.
- •14. Технологические возможности и особенности отжига, нормализации, закалки и отпуска
- •14.1 Основы технологии термической обработки
- •14.2 Отжиг и нормализация. Назначение и режимы.
- •1. Отжиг первого рода.
- •2. Отжиг второго рода.
- •14.3 Технологические особенности и возможности закалки
- •1. Режим нагрева.
- •2. Охлаждение при закалке.
- •3. Способы закалки.
- •14.4 Отпуск и отпускная хрупкость
- •1. Технологические режимы отпуска.
- •2. Отпускная хрупкость.
- •15. Химико-термическая обработка стали: цементация, азотирование, нитроцементация и диффузионная металлизация
- •15.1 Химико-термическая обработка стали
- •15.2 Назначение и технология цементации
- •1. Цементация в твердом карбюризаторе.
- •2. Газовая цементация.
- •3. Структура цементованного слоя.
- •15.3 Назначение и технология азотирования
- •1. Технология азотирования.
- •2. Строение азотированного слоя.
- •15.4 Цианирование и нитроцементация
- •1. Цианирование.
- •2. Нитроцементация.
- •15.5 Диффузионная металлизация
- •16. Методы упрочнения металла
- •16.1 Термомеханическая обработка стали
- •1. Высокотемпературная термомеханическая обработка.
- •2. Низкотемпературная термомеханическая обработка (аусформинг).
- •16.2 Поверхностное упрочнение стальных деталей
- •1. Закалка токами высокой частоты.
- •2. Газопламенная закалка.
- •16.3 Старение
- •16.4 Обработка стали холодом
- •16.5 Упрочнение методом пластической деформации
- •17. Конструкционные материалы. Легированные стали
- •17.1 Конструкционные материалы
- •17.2 Легированные стали
- •17.3 Влияние легирующих элементов на полиморфизм железа
- •17.4 Влияние легирующих элементов на превращения в стали
- •1. Влияние легирующих элементов на превращение перлита в аустенит.
- •3. Влияние легирующих элементов на мартенситное превращение.
- •4. Влияние легирующих элементов на превращения при отпуске.
- •17.5 Классификация легированных сталей
- •18. Конструкционные стали. Классификация конструкционных сталей
- •18.1 Классификация конструкционных сталей
- •18.2 Углеродистые стали
- •18.3 Цементуемые и улучшаемые стали
- •1. Цементуемые стали.
- •2. Улучшаемые стали.
- •18.4 Высокопрочные, пружинные, шарикоподшипниковые, износостойкие и автоматные стали
- •1. Высокопрочные стали.
- •2. Пружинные стали.
- •3. Шарикоподшипниковые стали.
- •4. Стали для изделий, работающих при низких температурах.
- •5. Износостойкие стали.
- •6. Автоматные стали.
- •18.5 Судокорпусные стали
- •19. Инструментальные материалы
- •19.1 Стали для режущего инструмента
- •1. Углеродистые инструментальные стали.
- •2. Легированные инструментальные стали.
- •3. Быстрорежущие стали.
- •19.2 Стали для мерительных инструментов
- •19.3 Штамповые стали
- •1. Стали для штампов холодного деформирования.
- •2. Стали для штампов горячего деформирования.
- •19.4 Твердые сплавы
- •19.5 Алмаз как материал для изготовления инструментов
- •20. Коррозионно-стойкие стали и сплавы. Жаростойкие стали и сплавы. Жаропрочные стали и сплавы
- •20.1 Коррозия: понятие и виды
- •1. Электрохимическая коррозия.
- •2. Химическая коррозия.
- •20.2 Классификация коррозионно-стойких сталей и сплавов
- •20.3 Жаростойкость, жаростойкие стали и сплавы
- •20.4 Жаропрочность, жаропрочные стали и сплавы
- •21. Цветные металлы и сплавы на их основе. Титан и его сплавы. Алюминий и его сплавы. Магний и его сплавы. Медь и ее сплавы
- •21.1 Титан и его сплавы
- •21.2 Алюминий и его сплавы
- •1. Деформируемые сплавы, не упрочняемые термической обработкой.
- •2. Деформируемые сплавы, упрочняемые термической обработкой.
- •3. Литейные алюминиевые сплавы.
- •21.3 Магний и его сплавы
- •1. Деформируемые магниевые сплавы.
- •2. Литейные магниевые сплавы.
- •21.4 Медь и ее сплавы
- •1. Латуни.
- •2. Бронзы.
- •22. Композиционные материалы. Материалы порошковой металлургии: пористые, конструкционные, электротехнические
- •22.1 Композиционные материалы
- •1. Композиционные материалы с нуль-мерным наполнителем.
- •2. Композиционные материалы с одномерными наполнителями.
- •3. Эвтектические композиционные материалы.
- •4. Полимерные композиционные материалы.
- •22.2 Материалы порошковой металлургии
- •1. Пористые порошковые материалы.
- •2. Конструкционные порошковые материалы.
- •3. Спеченные цветные металлы.
- •4. Электротехнические порошковые материалы.
- •23. Неметаллические материалы.
- •23.1 Понятие о неметаллических материалах и классификация полимеров
- •23.2 Классификация пластмасс
- •23.3 Термопластичные пластмассы
- •1. Полиэтилен.
- •2. Полипропилен.
- •3. Полистирол.
- •4. Фторопласт.
- •5. Органическое стекло.
- •6. Пластмассы на основе поливинилхлорида.
- •7. Полиамиды.
- •8. Поликарбонат.
- •23.4 Термореактивные пластмассы
- •1. Пластмассы с порошковыми наполнителями.
- •2. Пластмассы с волокнистыми наполнителями.
- •3. Слоистые пластмассы.
- •4. Газонаполненные пластмассы.
- •23.5 Резиновые материалы
- •1. Свойства резиновых материалов.
- •2. Классификация резиновых материалов.
- •3. Компонентный состав резин.
- •4. Резины общего назначения.
- •5. Резины специального назначения.
- •Практическая часть
- •1. Перечень необходимых для выполнения лабораторных работ по курсу дисциплины «мткм»
- •2. Список источников, рекомендуемых при подготовке к сдаче зачета или экзамена
- •2.1 Библиографические источники
- •2.2 Электронные ресурсы
- •3. Вопросы для подготовки к зачету по дисциплине «мткм»
- •4. Вопросы для подготовки к экзамену по дисциплине «мткм»
- •Библиографический список
- •Приложение
- •Оглавление
- •Курников Александр Серафимович Мизгирев Дмитрий Сергеевич Материаловедение и технология конструкционных материалов
10. Железоуглеродистые сплавы. Диаграмма состояния железо – углерод
Железоуглеродистые сплавы – стали и чугуны – важнейшие металлические сплавы современной техники. Производство чугуна и стали по объему превосходит производство всех других металлов вместе взятых более чем в десять раз.
Диаграмма состояния «железо – углерод» дает основное представление о строении железоуглеродистых сплавов.
Начало изучению диаграммы положил русский ученый Чернов Д.К. в 1868 году. Он впервые указал на существование в стали критических точек и на зависимость их положения от содержания углерода.
В идеале, диаграмма «железо – углерод» должна распространяться от железа до углерода. Железо образует с углеродом химическое соединение: цементит – Fe3C. Каждое устойчивое химическое соединение можно рассматривать как компонент, а диаграмму – по частям. Так как на практике применяют металлические сплавы с содержанием углерода до 5 %, то рассматриваем часть диаграммы состояния от железа до химического соединения цементита, содержащего 6.67 %углерода.
Диаграмма «железо – цементит» представлена на рис. 10.1.
10.1 Компоненты и фазы железоуглеродистых сплавов
Компонентами железоуглеродистых сплавов являются железо, углерод и цементит.
1. Железо
– переходный металл серебристо-светлого
цвета. Имеет высокую температуру
плавления – 1539 С
5 С.
В твердом состоянии железо может находиться в двух модификациях. Полиморфные превращения происходят при температурах 911 С и 1392 С. При температуре ниже 911 С существует Fe с объемно-центрированной кубической решеткой. В интервале температур (911…1392) С устойчивым является Fe с гранецентрированной кубической решеткой. Выше 1392 С железо имеет объемно-центрированную кубическую решетку и называется Fe или высокотемпературное Fe.
Железо технической чистоты обладает невысокой твердостью и прочностью и высокими характеристиками пластичности.
Железо характеризуется высоким модулем упругости, наличие которого проявляется и в сплавах на его основе, обеспечивая высокую жесткость деталей из этих сплавов. Железо со многими элементами образует растворы: с металлами – замещения, с углеродом, азотом и водородом – внедрения.
2. Углерод относится к неметаллам. Обладает полиморфным превращением, в зависимости от условий образования существует в форме графита с гексагональной кристаллической решеткой (температура плавления – 3500 С, плотность – 2,5 г/см3) или в форме алмаза со сложной кубической решеткой (температура плавления – 5000 С).
|
Рисунок 10.1 – Диаграмма состояния железо-цементит |
3. Цементит (Fe3C) – химическое соединение железа с углеродом (карбид железа), содержит 6,67 % углерода.
Аллотропических превращений не испытывает. Кристаллическая решетка цементита состоит из ряда октаэдров, оси которых наклонены друг к другу.
Температура плавления цементита точно не установлена (1250…1550 С). При низких температурах цементит слабо ферромагнитен. Цементит имеет высокую твердость (более 800 НВ, легко царапает стекло), но чрезвычайно низкую, практически нулевую, пластичность. Такие свойства являются следствием сложного строения кристаллической решетки.
Цементит способен образовывать твердые растворы замещения. Атомы углерода могут замещаться атомами неметаллов: азотом, кислородом; атомы железа – металлами: марганцем, хромом, вольфрамом и др. Такой твердый раствор на базе решетки цементита называется легированным цементитом.
Цементит – соединение неустойчивое и при определенных условиях распадается с образованием свободного углерода в виде графита. Этот процесс имеет важное практическое значение при структурообразовании чугунов.
В системе железо – углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит.
1. Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.
2. Феррит (Ф) Fe(C) – твердый раствор внедрения углерода в -железо.
Феррит имеет переменную предельную растворимость углерода. Углерод располагается в дефектах решетки.
Свойства феррита близки к свойствам железа. Он мягок и пластичен, магнитен до 768 С.
3. Аустенит (А) Fe(С) – твердый раствор внедрения углерода в -железо.
Углерод занимает место в центре гранецентрированной кубической ячейки. Аустенит имеет переменную предельную растворимость углерода..
Аустенит имеет достаточно высокую твердость, пластичен, парамагнитен.
При растворении в аустените других элементов могут изменяться свойства и температурные границы существования.
4. Цементит – характеристика дана выше.
В железоуглеродистых сплавах присутствуют фазы: цементит первичный (ЦI), цементит вторичный (ЦII), цементит третичный (ЦIII). Химические и физические свойства этих фаз одинаковы. Влияние на механические свойства сплавов оказывает различие в размерах, количестве и расположении этих выделений. Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зерен аустенита (при охлаждении – вокруг зерен перлита). Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зерен.