
- •Электрофизиология нервной клетки
- •Мембранный потенциал
- •Мембранный потенциал покоя в нервной клетке.
- •Транспорт ионов через клеточную мембрану
- •Электротон и локальный ответ
- •Потенциал действия
- •Изменения возбудимости клетки
- •Распространение потенциала действия
- •Потенциал покоя
- •Электротон и потенциал действия
- •Литература
- •Подписи к рисункам
Санкт-Петербургский государственный медицинский университет
имени академика И. П. Павлова
Кафедра нормальной физиологии
--------------------------------------------------------------------------------------
А. М. Коробкова
Электрофизиология нервной клетки
Учебное пособие
Санкт-Петербург
2010
Автор – доцент, канд биол. наук А.М.Коробкова
Редактор – д.м.н., проф. А.Ф.Якимовский
Рецензент –канд. хим. наук, доцент Л.А.Меркушева
Предлагаемая работа представляет собой полностью переработанное изданное в 2000 г. пособие «Физиология возбудимых тканей» и предназначено для самостоятельного изучения темы, вызывающей у студентов наибольшие трудности в понимании.
Основная задача предлагаемого пособия – разобрать те вопросы, которые наиболее сложны для обучающихся и недостаточно полно рассмотрены в базовом учебнике. Пособие содержит фундаментальную информацию в объеме, соответствующем учебным планам СПбГМУ и медицинскому стандарту USMLE. Представлены новые сведения о строении и работе ионных каналов, условиях возникновения и развития мембранных потенциалов в возбудимых тканях.
Информация является дополнением к материалу, изложенному в вузовском учебнике «Нормальная физиология человека», изданном в 2005 году под редакцией академика РАМН Б.И.Ткаченко, основном для студентов 2 курса СПбГМУ. Пособие включает вопросы для самоконтроля, сопровождающие каждый раздел, и тестовые задания для самостоятельной работы.
Предназначено для самостоятельной работы студентов 2 курса СПбГМУ им. акад И.П.Павлова.
Мембранный потенциал
Определение. Все живые клетки обладают мембранным потенциалом. Мембранный потенциал (МП) - это электрическая энергия, существующая по обе стороны мембраны, созданная разделением разноименно заряженных частиц. Внешняя сторона мембраны всех живых клеток заряжена положительно, внутренняя сторона заряжена отрицательно.
В клетке и вне клетки находится большое количество отрицательно и положительно заряженных ионов. Электрическая сила перемещает положительно и отрицательно заряженные ионы одновременно. Одноименно заряженные ионы отталкивают друг друга, разноименно заряженные - притягиваются. Взаимодействие между ионами увеличивается, если расстояние между ними уменьшается, а величина заряда ионов растет.
Чтобы разделить разноименно заряженные частицы необходимо приложить силу, которая больше силы их притяжения. Разделенные разноименно заряженные частицы движутся навстречу и электрические силы притяжения, передвигающие частицы, совершают работу, т.е. разноименно заряженные частицы обладают потенциалом для совершения работы, если могут вновь двигаться навстречу друг другу. Способность разделенных электрических частиц совершать работу при перемещении из одной точки системы к другой создает электрический потенциал, или – разность потенциалов, или – просто потенциал.
Мембранный потенциал называют мембранным потенциалом покоя, если его величина поддерживается без изменений и клетка не выполняет какую-то функцию, например - восприятие и передачу информации.
Роль потенциала, возникающего в результате разделения заряженных частиц, огромна. Это электрическая энергия, существующая в каждой клетке живого организма, которая используется на перемещение множества органических веществ в клетку и из клетки, для транспорта солей (и, соответственно, воды) через клеточную мембрану и между цитоплазменными органеллами, является важнейшим участником сигнальных процессов, определяющих координацию движения между клетками и органами и, без сомнения, является основой всех познавательных процессов. Знание электрических свойств клетки является абсолютно необходимым для изучения функций и механизмов работы практически всех систем органов.
Измерение. Метод измерения мембранного потенциала теоретически прост, но на практике бывает трудным, так как клетки имеют очень малый размер. Рис.1 показывает микроэлектрод – стеклянную пипетку, заполненную концентрированным раствором КС1, входящую в клетку через клеточную мембрану. Другой электрод, называемый индифферентным электродом, находится в окружающей клетку среде. Разность потенциалов между этими двумя электродами измеряется вольтметром. Микроэлектрод является точным прибором, способным измерять очень малые значения потенциала, несмотря на большое сопротивление электрическому току, которое есть у кончика микроэлектрода, размер которого не более 0.5мкм, а сопротивление – десятки мОм. Для записи изменения мембранного потенциала вольтметр соединен с осциллографом. Величина мембранного потенциала в разных клетках составляет от –10 мВ до –90 мВ.