
- •Глава 1. Исследовательская деятельность школьников в системе экологического образования
- •Глава 2. Организация школьного экологического мониторинга
- •2.1. Экологический мониторинг, его цели и задачи
- •2.2. Место и роль школьных коллективов, внешкольных учреждений и вузов в программе экологического мониторинга
- •2.3. Концепция школьного экологического мониторинга
- •2.4. Организационная структура школьного экомониторинга
- •2.5. Общие требования к оформлению документации
- •Глава 3. Выбор и характеристика объектов школьного экомониторинга
- •3.1. Физико-географическая характеристика объектов мониторинга
- •3.1.1. Географическое положение
- •3.1.2. Мезорельеф и микрорельеф
- •3.1.3. Микроклимат
- •3.1.4. Почвы
- •3.2. План (карта) объектов мониторинга
- •3.3. Экологическая оценка исследуемой территории
- •3.4. Выбор объектов мониторинга
- •3.5. Экологическая оценка природных сред и объектов по программе мониторинга
- •Глава 4. Методы экологического мониторинга
- •4.1. Биоиндикационные методы
- •4.1.1. Краткая история биоиндикационных исследований
- •4.1.2. Виды и методы биоиндикации
- •4.2. Физико-химические методы
- •Глава 5. Методы мониторинга биологических объектов (биоты)
- •5.1. Мониторинг биоты
- •5.7.7. Мониторинг лесного фитоценоза [10, 11]
- •5.1.2. Мониторинг лугового фитоценоза
- •5.1.3. Мониторинг фауны лугов
- •5.1.4. Методика количественного учета птиц и расчета плотности их населения
- •5.1.5. Методы учета млекопитающих по следам
- •5.1.6. Мониторинг зеленых насаждений населенного пункта
- •Подготовительный этап:
- •II. Проведение обследования
- •5.2. Дополнительные методы
- •5.2.2. Определение встречаемости растительных видов в изучаемом сообществе
- •5.2.3. Сравнение видового состава растений на двух ключевых участках
- •5.2.4. Оценка состояния древостоя смешанного леса с использованием простейшей шкалы
- •5.2.5. Индикация загрязнения окружающей среды по качеству пыльцы [13]
- •5.2.6. Методы исследования состава золы и сока растений [15,16]
- •5.2.7. Учет летающих насекомых световой ловушкой
- •Глава 6. Методы мониторинга воздушной среды
- •6.1. Биоиндикационные методы
- •6.1.1. Биоиндикация загрязнения воздуха по состоянию сосны
- •6.1.3. Дополнительные методы
- •Род Уснея
- •Род Бриория
- •Род Цетрария
- •Род Анаптихия
- •Род Псевдоэверния
- •Род Эверния
- •Род Ксантория
- •Род Канделярия
- •Род Пармелеопсис
- •Род Гипогимния
- •Род Фискония
- •Род Фисция
- •Род Феофисция
- •Род Платизмация
- •Род Цетрелия
- •Род Пармелия
- •Род Лепрария
- •Род Пертузария
- •Род Калициум
- •Род Лецидея
- •6.2. Физико-химические методы
- •6.2.2. Определение запыленности воздуха [7, 10]
- •6.2.3. Дополнительные методы
- •6.3. Оценка чистоты атмосферного воздуха по величине автотранспортной нагрузки
- •Глава 7. Методы мониторинга почв
- •7.1. Биоиндикациоиные методы
- •7.1.2. Растения — индикаторы водного режима почв
- •7.1.3. Растения — индикаторы глубины залегания грунтовых вод
- •7.1.6. Биодиагностика почвенных микро- и макроэлементов
- •7.1.8. Дополнительные методы
- •7.1.8.1. Использование листьев липы в качестве биоиндикатора солевого загрязнения почвы [10, 27]
- •7.1.8.2. Использование почвенных водорослей для биоиндикации состояния почв [28]
- •7.1.8.3. Кресс-салат как тест-объект для оценки загрязнения почвы и воздуха [27]
- •7.1.8.4. Учет беспозвоночных при помощи биоценометра
- •7.2. Физико-химические методы исследования почв
- •7.2.2. Определение физических свойств почв [7, 11]
- •7.2.4. Методы определения биологической активности почв
- •Глава 8. Методы мониторинга водных объектов
- •8.1. Биоиндикационпые методы
- •8.1.1. Биоиндикация качества воды с использованием водорослей (альгоиндикация) [10]
- •8.1.2. Биоиндикация качества воды по животному населению
- •8.1.2.1. Отбор и обработка проб для анализа
- •8.1.2.3. Определение степени загрязнения водоема по индексу Гуднайта и Уотлея
- •8.1.3. Дополнительные методы
- •8.2. Физико-химические методы
- •8.2.2. Органолептические показатели воды
- •8.2.2.2. Цветность [37]
- •8.2.3. Химические показатели воды
- •8 .2.4. Дополнительные методы
- •8.2.4.10. Остаточный хлор в водопроводной воде [37]
- •Глава 9. Физические методы экомониторинга
- •9.1. Мониторинг шумового загрязнения
- •1 Этап. Запись акустического шума на магнитофон
- •2 Этап. Анализ шума в лабораторных условиях
- •3 Этап. Обработка результатов измерений
- •4 Этап. Оценка и анализ результатов измерений
- •5 Этап. Отчетность
- •9.2. Методика радиоэкологического мониторинга
- •Глава 10. Здоровье и окружающая среда
- •10.1. Влияние экологических факторов на здоровье населения
- •10.2. Мониторинг физического развития учащихся
- •10.3. Характеристика заболеваемости
- •10.4. Характеристика социальных условий проживания
- •Глава 11. Обработка данных и оформление результатов
- •11.1. Обработка данных и получение статистических оценок
- •11.1.1. Оценка среднего значения и его погрешности
- •11.1.2. Оценка достоверности различия средних значений
- •11.2. Экологическое картографирование микрорайона школы
- •Глава 12. Экологический паспорт территории микрорайона школы
- •1. Физико-географическая характеристика исследуемой территории
- •2. Характеристика ключевых участков
- •1.1. Экологические проблемы современности
- •1.1.2. Химическое оружие [55-60]
- •1.1.3. Проблема радиоактивности в окружающей среде
- •1.1.6. Проблема озонового экрана
- •1.2. Знаете ли вы, что...
- •1.3. Проверь свои знания о родном крае
- •Глава 6. Методы мониторинга воздушной среды.
- •Глава 7. Методы мониторинга почв
- •Глава 8. Методы мониторинга водных объектов .
3.1.3. Микроклимат
Даже в пределах территории школьного микрорайона под влиянием местных условий (мелких форм рельефа, экспозиции склона, почвенно-грунтовых особенностей, характера растительного покрова) создаются особые условия, получившие название микроклимата.
Для проведения микроклиматических наблюдений необходимо регулярное одновременное измерение температуры и влажности воздуха на двух уровнях:
в приземном слое на высоте 0-20 см от поверхности почвы;
на высоте человеческого роста 150-200 см от поверхности почвы. Разумеется, при всех температурных измерениях термометр должен находиться в тени. Как правило, в приземном слое более высокая влажность, зато температура, даже в середине дня, на 2-5° ниже. Интересны и поучительны для учащихся микроклиматические наблюдения в разных фитоценотических условиях: лес, луг, засеянный агроценоз, паровое поле и т. д. В этих условиях особенно четко прослеживается влияние растительности на микроклимат приземного слоя воздуха. Особенно велико влияние леса на микроклиматические условия (гасится ветер). Сохраняется высокая влажность.
Кроме растительности, большое воздействие на микроклиматические условия оказывают мезорельеф и экспозиция склонов. В летние дни понижения мезорельефа более прогреты в сравнении с возвышенностями, чаще наблюдаются туманы и росы. Зимой при ясной погоде в низинах температура ниже, чем на возвышенностях. Наконец, различие в температурном режиме склонов северной и южной экспозиций общеизвестны. Эти микроклиматические различия в рамках одной и той же формы мезорельефа отражаются даже на структуре фитоценозов.
Упомянутые выше микроклиматические наблюдения удобно проводить на территории микрорайона сельской школы. Совсем иная ситуация в городах: в них практически не «работают» природные микроклиматические факторы - растительность и мезорельеф. На передний план выдвигается мощный антропогенный фактор. Его основные компоненты-асфальтированная поверхность почвы, каменные и бетонные стены зданий, оживленные транспортные магистрали, трубы теплотрасс, заводы, электростанции, другие сооружения, источники тепла и аэрозольного загрязнения. В результате даже макроклимат городов специфичен. В сравнении с окружающим пригородным фоном здесь выше температура воздуха, ниже уровень инсоляции, чаще наблюдаются туманы. Что же касается непосредственно микроклимата микрорайона школы, то интерес представляют наблюдения в точках, выбранных в соответствии с планом территории (п. 3.1.2). В качестве возможных вариантов можно предложить сравнение микроклиматических наблюдений у деревянных и каменных домов; у внешней стороны многоэтажного здания и в его дворе; непосредственно у стен здания школы с учетом их экспозиции (северная, южная и т. д.).
Микроклиматические наблюдения приземного слоя воздуха позволяют формировать и уточнять представления учащихся об условиях развития биогеоценозов и некоторых особенностях физико-химического режима почвенного покрова.
3.1.4. Почвы
1. Исходной основой для подразделения почв на типы служит сочетание почвообразующих факторов. К главным из них относятся:
литогенная основа (геологическое строение), от которой зависят механический состав и геохимические особенности почвы;
растительность, обеспечивающая органическую часть почвы;
гидротермические (климатические) условия, определяющие тепловой и водный режим почв.
2. В процессе развития почвы под воздействием перечисленных факторов формируются горизонты вертикального почвенного профиля. К ним относятся:
А0 - неразложившиеся остатки растений (хвоя, мхи, дернина);
A1 - горизонт накопления гумуса;
в агроценозах А0 + А1 образуют Ап (пахотный горизонт);
А2 - горизонт вымывания коллоидов;
В - горизонт вмывания минеральных и, иногда, органических коллоидов;
С - почвообразующая порода, т.е. горная порода (литогенная основа), измененная химическими процессами почвообразования. Кроме того, во многих случаях выделяются переходные (промежуточные) горизонты А1А2; А1В; А2В; ВС.
3. Наличие и сочетание тех или иных почвенных горизонтов служит критерием подразделения почв на типы, подтипы, виды. Применительно к территориям школьных микрорайонов севера европейской части России типология почв выглядит следующим образом:
подзолистый тип: горизонты А0+А2+В+С;
дерново-подзолистый тип, преобладающий в Европейской России: А0+А1+А2+В+С; по соотношению горизонтов обычно подразделяется на подтипы: дерново-сильноподзолистые (А1<А2), дерново-среднеподзолистые (А1>А2), дерново-слабоподзолистые (вместо А2 выделяется переходный горизонт А2В);
-дерновые почвы: горизонты А0+А1+В+С; среди них выделяются свойственные водоразделам дерново-карбонатные почвы, богатые катионами кальция, и пойменные дерновые почвы речных долин;
- серые лесные почвы (почти повсеместно распаханы, когда-то они развивались под широколиственными лесами): горизонты Ап+А1А2+В+С в агроценозах; А0+А1+А1А2+С под естественной растительностью.
Остальные типы почв (болотные, подзолисто-болотные) вряд ли встретятся в пределах школьных микрорайонов; даже при их наличии сомнительно, чтобы они стали объектом почвенных исследований учащихся.