
- •Глава 1. Исследовательская деятельность школьников в системе экологического образования
- •Глава 2. Организация школьного экологического мониторинга
- •2.1. Экологический мониторинг, его цели и задачи
- •2.2. Место и роль школьных коллективов, внешкольных учреждений и вузов в программе экологического мониторинга
- •2.3. Концепция школьного экологического мониторинга
- •2.4. Организационная структура школьного экомониторинга
- •2.5. Общие требования к оформлению документации
- •Глава 3. Выбор и характеристика объектов школьного экомониторинга
- •3.1. Физико-географическая характеристика объектов мониторинга
- •3.1.1. Географическое положение
- •3.1.2. Мезорельеф и микрорельеф
- •3.1.3. Микроклимат
- •3.1.4. Почвы
- •3.2. План (карта) объектов мониторинга
- •3.3. Экологическая оценка исследуемой территории
- •3.4. Выбор объектов мониторинга
- •3.5. Экологическая оценка природных сред и объектов по программе мониторинга
- •Глава 4. Методы экологического мониторинга
- •4.1. Биоиндикационные методы
- •4.1.1. Краткая история биоиндикационных исследований
- •4.1.2. Виды и методы биоиндикации
- •4.2. Физико-химические методы
- •Глава 5. Методы мониторинга биологических объектов (биоты)
- •5.1. Мониторинг биоты
- •5.7.7. Мониторинг лесного фитоценоза [10, 11]
- •5.1.2. Мониторинг лугового фитоценоза
- •5.1.3. Мониторинг фауны лугов
- •5.1.4. Методика количественного учета птиц и расчета плотности их населения
- •5.1.5. Методы учета млекопитающих по следам
- •5.1.6. Мониторинг зеленых насаждений населенного пункта
- •Подготовительный этап:
- •II. Проведение обследования
- •5.2. Дополнительные методы
- •5.2.2. Определение встречаемости растительных видов в изучаемом сообществе
- •5.2.3. Сравнение видового состава растений на двух ключевых участках
- •5.2.4. Оценка состояния древостоя смешанного леса с использованием простейшей шкалы
- •5.2.5. Индикация загрязнения окружающей среды по качеству пыльцы [13]
- •5.2.6. Методы исследования состава золы и сока растений [15,16]
- •5.2.7. Учет летающих насекомых световой ловушкой
- •Глава 6. Методы мониторинга воздушной среды
- •6.1. Биоиндикационные методы
- •6.1.1. Биоиндикация загрязнения воздуха по состоянию сосны
- •6.1.3. Дополнительные методы
- •Род Уснея
- •Род Бриория
- •Род Цетрария
- •Род Анаптихия
- •Род Псевдоэверния
- •Род Эверния
- •Род Ксантория
- •Род Канделярия
- •Род Пармелеопсис
- •Род Гипогимния
- •Род Фискония
- •Род Фисция
- •Род Феофисция
- •Род Платизмация
- •Род Цетрелия
- •Род Пармелия
- •Род Лепрария
- •Род Пертузария
- •Род Калициум
- •Род Лецидея
- •6.2. Физико-химические методы
- •6.2.2. Определение запыленности воздуха [7, 10]
- •6.2.3. Дополнительные методы
- •6.3. Оценка чистоты атмосферного воздуха по величине автотранспортной нагрузки
- •Глава 7. Методы мониторинга почв
- •7.1. Биоиндикациоиные методы
- •7.1.2. Растения — индикаторы водного режима почв
- •7.1.3. Растения — индикаторы глубины залегания грунтовых вод
- •7.1.6. Биодиагностика почвенных микро- и макроэлементов
- •7.1.8. Дополнительные методы
- •7.1.8.1. Использование листьев липы в качестве биоиндикатора солевого загрязнения почвы [10, 27]
- •7.1.8.2. Использование почвенных водорослей для биоиндикации состояния почв [28]
- •7.1.8.3. Кресс-салат как тест-объект для оценки загрязнения почвы и воздуха [27]
- •7.1.8.4. Учет беспозвоночных при помощи биоценометра
- •7.2. Физико-химические методы исследования почв
- •7.2.2. Определение физических свойств почв [7, 11]
- •7.2.4. Методы определения биологической активности почв
- •Глава 8. Методы мониторинга водных объектов
- •8.1. Биоиндикационпые методы
- •8.1.1. Биоиндикация качества воды с использованием водорослей (альгоиндикация) [10]
- •8.1.2. Биоиндикация качества воды по животному населению
- •8.1.2.1. Отбор и обработка проб для анализа
- •8.1.2.3. Определение степени загрязнения водоема по индексу Гуднайта и Уотлея
- •8.1.3. Дополнительные методы
- •8.2. Физико-химические методы
- •8.2.2. Органолептические показатели воды
- •8.2.2.2. Цветность [37]
- •8.2.3. Химические показатели воды
- •8 .2.4. Дополнительные методы
- •8.2.4.10. Остаточный хлор в водопроводной воде [37]
- •Глава 9. Физические методы экомониторинга
- •9.1. Мониторинг шумового загрязнения
- •1 Этап. Запись акустического шума на магнитофон
- •2 Этап. Анализ шума в лабораторных условиях
- •3 Этап. Обработка результатов измерений
- •4 Этап. Оценка и анализ результатов измерений
- •5 Этап. Отчетность
- •9.2. Методика радиоэкологического мониторинга
- •Глава 10. Здоровье и окружающая среда
- •10.1. Влияние экологических факторов на здоровье населения
- •10.2. Мониторинг физического развития учащихся
- •10.3. Характеристика заболеваемости
- •10.4. Характеристика социальных условий проживания
- •Глава 11. Обработка данных и оформление результатов
- •11.1. Обработка данных и получение статистических оценок
- •11.1.1. Оценка среднего значения и его погрешности
- •11.1.2. Оценка достоверности различия средних значений
- •11.2. Экологическое картографирование микрорайона школы
- •Глава 12. Экологический паспорт территории микрорайона школы
- •1. Физико-географическая характеристика исследуемой территории
- •2. Характеристика ключевых участков
- •1.1. Экологические проблемы современности
- •1.1.2. Химическое оружие [55-60]
- •1.1.3. Проблема радиоактивности в окружающей среде
- •1.1.6. Проблема озонового экрана
- •1.2. Знаете ли вы, что...
- •1.3. Проверь свои знания о родном крае
- •Глава 6. Методы мониторинга воздушной среды.
- •Глава 7. Методы мониторинга почв
- •Глава 8. Методы мониторинга водных объектов .
8.2. Физико-химические методы
8.2.1. Пробоотбор и подготовка воды к анализу [36, 37] Для проведения физико-химического анализа воды необходимо правильно провести пробоотбор.
В зависимости от цели исследования проба воды для анализа может быть получена несколькими способами:
путем однократного отбора всего количества воды, нужного для анализа;
смешением проб, отобранных через определенные промежутки времени в одном месте исследуемого водоема;
смешением проб, отобранных одновременно в разных местах исследуемого водоема.
При отборе проб воды используют посуду из бесцветного стекла или полиэтилена марок, разрешенных для контакта с питьевой водой. Посуда должна быть тщательно вымыта моющими средствами, многократно ополоснута водопроводной и дистиллированной водой, а непосредственно перед забором воды посуду несколько раз ополаскивают исследуемой водой. Пробки желательно использовать стеклянные или полиэтиленовые; корковые или резиновые пробки обертывают полиэтиленовой пленкой.
На практике удобно пользоваться банкой или бутылью. В местах с затрудненным доступом к воде банку или бутыль можно прикрепить к шесту. Для взятия проб с определенной глубины используются батометры (рис. 8.9). При отсутствии данного прибора можно сделать самодельный батометр, состоящий из бутыли (1 л) с прикрепленным к ней тонким прочным шнуром необходимой длины. Бутыль закрывают пробкой со шнуром и помещают в футляр, имеющий груз и петлю. К петле привязывают веревку с отметками, указывающими глубину погружения. На нужной глубине выдергивают пробку из бутыли и после наполнения емкости водой поднимают ее.
Отбор проб воды на проточных водоемах производится в 1 км выше ближайшего по течению пункта водопользования (водозабор для питьевого водоснабжения, места купания, организованного отдыха, территория населенного пункта), а на непроточных водоемах и водохранилищах в 1 км в обе стороны от пункта водопользования.
Обычно пробы в створе отбирают в трех точках (у обоих берегов и в фарватере); при ограниченных же технических возможностях или на небольших водоемах допускается отбор проб в одной-двух точках (в местах наиболее сильного течения). Чаще всего пробы отбирают в 5-10 м от берега на глубине 50 см. Объектом особого внимания должны стать загрязненные струи.
Если на реке имеется сброс сточных вод от промышленных предприятий, стоки животноводческих ферм и т. д., то отбор проб воды проводят ниже сброса на 500 м, что позволяет контролировать степень загрязнения воды в реке сточными водами (для сравнения следует взять пробу на 500 м выше сброса сточных вод).
Если предполагается, что в результате сброса сточных вод в придонных слоях накапливаются оседающие вредные вещества, которые могут стать источником вторичного загрязнения воды, отбирают придонные пробы на расстоянии 30-50 см от дна.
В водохранилищах, озерах, прудах, где течение воды резко замедленно, качество воды может быть неоднородным на различных участках (здесь возможно возникновение вторичных источников загрязнения), поэтому в этих водоемах обычно берут серию проб по глубине.
Сразу же после взятия пробы необходимо сделать запись об условиях сбора, направлении ветра, указать дату и час отбора воды.
Подготовка воды к анализу
Для получения достоверных результатов анализ следует проводить как можно быстрее. В воде происходят процессы окисления-восстановления, физико-химические, биохимические, вызванные деятельностью микроорганизмов, сорбции, десорбции, седиментации и т. д. Могут изменяться и органолептические свойства воды - запах, цвет и др. Некоторые вещества способны адсорбироваться на стенках сосудов (железо, алюминий, медь, кадмий, марганец и др.), а из стекла бутылей могут выщелачиваться микроэлементы. При невозможности исследовать воду в установленные для соответствующих показателей сроки (табл. 8.3) ее охлаждают или консервируют.
Биохимические процессы в воде можно замедлить, охладив ее до 4°С. В этих условиях медленнее разрушаются и многие органические вещества.
Универсального консервирующего средства не существует, поэтому пробы для анализа отбирают в несколько бутылей. В каждой из них на месте отбора пробу консервируют, добавляя различные реагенты (табл. 8.3).
Подготовка воды непосредственно перед анализом заключается в следующем:
консервированные пробы при необходимости нейтрализуют, а охлажденные нагревают до комнатной температуры (не на нагревательном приборе);
если определению мешают мутность и цветность, то проводят специальную подготовку: пробы фильтруют, отстаивают или коагулируют.
Коагуляция проводится добавлением 5 мл суспензии гидроксида алюминия на 1 л воды, после чего смесь хорошо взбалтывают и дают отстояться.
Находящиеся в природной и питьевой воде загрязняющие вещества имеют, как правило, очень маленькие концентрации. Для того, чтобы определить присутствие этих загрязнителей в условиях школьной лаборатории, следует провести концентрирование этих примесей одним из указанных ниже способов.
Упаривание воды. Отбирают 100-1000 мл исследуемой воды (в зависимости от предполагаемого содержания определяемого компонента, величины ПДК и чувствительности метода) и упаривают на закрытой электрической плитке до объема около 50 мл.
Вымораживание воды (при этом примеси,
растворенные в воде, собираются в средней
части). 0,5-1 л исследуемой воды наливают
в хорошо промытую высокую консервную
банку и ставят в морозильную камер
у
холодильника. Через несколько часов
банку достают и, убедившись, что вся
вода замерзла, вынимают ледяной цилиндр
(предварительно нагрев дно и бока
банки горячей водой). На анализ берут
воду, полученную при размораживании
внутренней части ледяного цилиндра.
Для увеличения концентрации примесей
можно провести несколько последовательных
замораживаний проб воды, каждый раз
выбирая среднюю часть ледяного цилиндра
из предыдущего замораживания.
Если при анализе проводилось концентрирование пробы, то при последующих расчетах необходимо учитывать объем исходного образца воды.