Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лаб.раб.1-Призмы.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
229.89 Кб
Скачать

Список литературы

  1. Прикладная оптика / Под ред. Дубовик А.С. – М.: Машиностроение, 1992. – 479 с.

  2. Запрягаева Л.А., Свешникова И.С. Расчет и проектирование оптических систем. – М.: Логос, 2000.– 581 с.

  3. Справочник конструктора оптико-механических приборов / Под ред. В.А. Панова. – Л.: Машиностроение, 1980.– 744 с.

  4. Кожевников Ю.Г. Оптические призмы. – М., Машиностроение, 1984, 148 с.

  5. Чуриловский В.H. Теория оптических приборов. М.–Л.: Машиностроение, 1966. – 561 с.

  6. Русинов М.M. Габаритный расчёт оптических систем. – M.: Недра, 1965, – 14 с.

Приложение 1

Основные законы распространения света

Раздел физики, посвященный изучению природы света, законов его распространения и взаимодействия с веществом называется физической оптикой.

Оптическое излучение (излучение с длинами волн от 1нм до 1мм (УФ, видимая и ИК области спектра) представляет собой единство двух процессов – волнового и квантового. Такие явления, как интерференция, дифракция и поляризация, могут быть объяснены волновой природой света, а фотоэффект (люминесценция, атомные и молекулярные спектры) – квантовой теорией.

При распространении света происходит его усиление в одних точках пространства и ослабление в других в результате наложения двух или нескольких волн (интерференция), а также отклонение его от прямолинейного пути, когда на его пути встречаются препятствия соизмеримые с длиной волны (дифракция).

Однако, многие оптические явления, в частности действие большого числа оптических приборов, можно рассматривать исходя из представления о световых лучах как направлениях распространения энергии, которые является нормалями к волновой поверхности. Т.о. световой луч, есть абстрактное математическое понятие, а геометрическая оптика является частным случаем физической оптики (D>> и 0).

Геометрическая оптика – раздел физической оптики, в котором рассматривается распространение света без учета его волновых свойств и электромагнитной природы.

В приближении геометрической оптики предполагают, что длиной волны света можно пренебречь, и под лучом понимают узкую световую трубку. Такое представление упрощает рассмотрение ряда явлений, но является приближенным, поскольку луч (в таком понимании) расплывается в пространстве.

Основные выводы геометрической оптики создают необходимый математический аппарат для проектирования и расчета оптических систем.

1. Закон прямолинейного распространения света: распространение света между двумя точками в однородной (n = const) и изотропной среде осуществляется по прямой линии.

На основе закона объясняют явления солнечных и лунных затмений, геодезические и астрономические измерения, образование теней и полутеней.

Закон неприменим для лучей, проходящих через малое отверстие, край диафрагмы или любой задерживающий экран, где проявляется явление дифракции, а также, если среда является неоднородной.

2. Закон независимости распространения света: отдельные лучи и пучки, встречаясь, друг с другом и пересекаясь, не оказывают взаимного влияния. Явление интерференции не учитывают.

Закон справедлив для лучей, выходящих из различных центров излучения; не применим для лазерного излучения.

3 . Закон преломления: на границе прозрачных сред луч, падающий и преломленный, вместе с нормалью к поверхности в точке падения луча лежат в одной плоскости, а отношение синуса угла падения лучей к синусу угла преломления для двух данных оптических сред есть величина постоянная рис. 1.1).

1.1

Это отношение называется относительным показателем преломления двух сред.

Оптическая среда – это прозрачная среда с точно известным значением показателя преломления и средней дисперсии. Среда с большим показателем преломления называется средой оптически более плотной, а с меньшим – оптически менее плотной.

Все оптические среды характеризуются абсолютным показателем преломления или просто показателем преломления n, представляющим собой отношение синуса угла падения к синусу угла преломления при переходе луча из вакуума в данную среду.

Показатель преломления вакуума равен единице, а показатель преломления воздуха мало отличается от единицы nв=1,00027.