Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Задание на ЛАБОРАТОРНАЯ РАБОТА №3 .doc
Скачиваний:
30
Добавлен:
20.05.2014
Размер:
240.13 Кб
Скачать

Лабораторная работа №3

АВТОМАТИЗИРОВАННЫЙ СИНТЕЗ ПАРАМЕТРОВ КОНСТРУКЦИИ РАДИАТОРА ОХЛАЖДЕНИЯ ЭЛЕМЕНТА РЭС”

1.Введение

Цель работы - моделирование теплового режима электронного элемента радиоэлектронного средства (РЭС) и подбор параметров радиатора охлаждения и кулера для обеспечения его заданной теплостойкости.

Порядок выполнения работы:

а) используя данные для своего варианта задания (согласно номера в списке группы) составить электротепловую модель системы электронный элемент-радиатор-кулер-окружающая среда.

б) используя программу расчета тепловых режимов конструкций РЭС “Pilot” в ее графическом редакторе построить тепловую модель задавая конструктивные и теплофизические параметры ее тепловых ветвей, в том числе радиатора охлаждения транзистора и скорость потока воздуха, создаваемую кулером.

в) запустив программу расчета “Pilot” определять температуры в узлах модели и варьируя параметры радиатора и скорость воздуха, добиться заданного теплового режима электронного элемента при минимально необходимых для этого габаритах радиатора, при этом скорость потока воздуха не должна превышать 1м/с.

Большие трудности в разработке РЭС традиционными методами приводят к необходимости автоматизации проектирования с применением ЭВМ. В связи с этим создаются разнообразные по возможностям и назначению алгоритмы проектирования РЭС, являющиеся важным инструментом разработчика и позволяющие моделировать те или иные процессы, происходящие в РЭС.

Математическое обеспечение САПР состоит из математических моделей объектов проектирования методов и алгоритмов выполнения проектных операций и процедур. Основу математического обеспечения САПР составляет математический аппарат для моделирования, анализа и оптимизации проектируемого объекта.

Тепловые режимы РЭС в значительной степени определяют надежность ее работы. Микроминиатюризация устройств электроники привела к необходимости еще больше обращать внимание на тепловые режимы аппаратуры.

Элементы и механические части конструкции электронной аппаратуры могут нормально функционировать в ограниченном температурном диапазоне, то есть обладают ограниченной термостойкостью. Термостойкость - это способность материалов, элементов кратковременно или длительно выдерживать воздействие высоких и низких температур, а также резких изменений температуры (термоударов). Термостойкость материалов, элементов определяют, как правило, по началу существенных изменений их свойств или параметров, обусловленных различными физико-химическими процессами. Величину термостойкости оценивают диапазоном температур, на границах которого наступают указанные изменения. С термостойкостью связано другое важное понятие: допустимые температуры для материалов и элементов. В некоторых случаях величина допустимой температуры может быть достаточно обоснована свойствами материалов (термостойкостью), в большинстве случаев она устанавливается на основании опыта эксплуатации.

Все элементы, из которых собрана аппаратура, должны работать в нормальном тепловом режиме. Тепловой режим отдельного элемента считается нормальным, если выполняются два условия: 1) температура элемента в условиях эксплуатации заключена в пределах, ограничивающих диапазон температур, допустимых для данного элемента; 2) температура элемента такова, что будет обеспечена его работа с заданной надежностью. Тепловой режим аппарата считается нормальным, если для всех элементов, смонтированных в аппарате, выполняются сформулированные выше условия.

Обеспечение нормального теплового режима является одной из главных задач, решаемых при проектировании аппаратуры. Для решения этой задачи принимается ряд мер: выбирают определенные типы элементов в зависимости от условий эксплуатации аппаратуры; вводят в аппаратуру специальные нагреватели, разогревающие ее при отрицательных температурах среды; применяют рациональное размещение элементов, узлов и блоков; выбирают форму и размеры отдельных конструктивных составляющих; применяют специальные средства охлаждения отдельных элементов и аппаратуры в целом. Как правило, меры, применяемые для обеспечения нормального теплового режима элементов и аппаратуры, приводят к увеличению габаритных размеров, необходимости установки дополнительного оборудования, перерасходу электроэнергии, увеличению веса и усложнению конструкции. Поэтому очень важно технически грамотно обосновать применяемые меры, то есть найти оптимальное решение, компромиссное между необходимостью обеспечить нормальный тепловой режим элементов и недопустимостью существенного увеличения потребления энергии, веса, габаритов и т. д. Обоснование применяемых мер может быть получено путем расчета тепловых режимов проектируемой аппаратуры.