
- •Электроника
- •Силовая электроника
- •Предисловие
- •Тема 1. Элементная база силовой электроники 25
- •Тема 2. Управление силовыми полупроводниковыми
- •Тема 3. Методы и схемы защиты полупроводниковых
- •Тема 4. Применение мощных полупроводниковых
- •Предисловие
- •Развитие полупроводниковых ключей
- •Тема 1. Элементная база силовой электроники
- •1.1 Транзисторы
- •1.1.1 Основные виды силовых электронных ключей
- •1.1.2. Силовые биполярные транзисторы
- •1.1.3. Мощные мдп-транзисторы
- •1.1.4. Биполярные транзисторы с изолированным затвором (igbt)
- •1.1.5. Статические индукционные транзисторы
- •1.2. Тиристоры
- •1.2.1. Однооперационные тиристоры
- •1.2.2. Запираемые тиристоры
- •1.2.3. Индукционные тиристоры
- •1.2.4. Полевые тиристоры
- •1.2.5. Модули силовых электронных ключей.
- •1.2.6 Элементная база и типовые узлы систем управления
- •1.2.7. Формирователи импульсов управления
- •1.2.8. Микропроцессоры в системах управления
- •Тема 2. Управление силовыми полупроводниковыми
- •2.1. Функции и структура систем управления преобразователями
- •2.2. Основные типы формирователей импульсов управления
- •2.3. Формирователи импульсов управления с совместной передачей энергии и формы управляющего сигнала
- •2.3.1. Трансформаторные фиу биполярных транзисторов
- •2.3.2. Трансформаторные фиу для ключей с изолированным затвором
- •2.3.3. Трансформаторные фиу тиристоров
- •2.4. Формирователи импульсов управления с раздельной передачей питания и информационного сигнала
- •2.4.1. Потенциальная развязка информационного сигнала
- •2.4.2. Драйверы силовых транзисторов
- •2.4.3. Подключение драйверов к входным цепям силовых транзисторов
- •2.4.4. Драйверы тиристоров
- •2.5. Источники питания драйверов
- •Тема 3. Методы и схемы защиты полупроводниковых ключей
- •3.1. Основные виды перегрузок по напряжению и току
- •3.2. Методы защиты от помех
- •3.3. Защитные цепи силовых ключей
- •3.3.1. Цепи формирования траектории рабочей точки транзисторов
- •3.3.2. Защитные цепи тиристорных ключей
- •3.3.3. Защитные цепи силовых модулей
- •3.4. Защита силовых ключей от режимов короткого замыкания
- •3.5. Силовые ключи с интегрированной системой защиты
- •Тема 4. Приминение мощных полупроводниковых ключей в силовых схемах
- •4.1. Основные области применения ключевых приборов
- •4.2. Типовые схемы транзисторных ключей
- •4.2.1. Ключ на биполярном транзисторе
- •4.2.2. Ключ на мощном мдп-транзисторе
- •4.2.3. Ключ на биполярном транзисторе с изолированным затвором
- •4.2.4. Ключ на статическом индукционном транзисторе
- •4.3. Тиристорные ключи
- •4.3.1. Ключ на тиристоре с электростатическим управлением
- •4.3.2. Ключи на тиристорах с регенеративным включением
- •4.3.3. Особенности запирания тиристорных ключей
- •4.4. Применение ключевых транзисторов в схемах электронных балластов
- •4.5. Применение мощных мдп-транзисторов в импульсных источниках питания
- •4.6. Применение мощных ключей в схемах управления электродвигателями переменного тока
- •4.6.1. Основные режимы работы силовых ключей в шим-инверторах для асинхронных электродвигателей
- •4.6.2. Особенности применения igbt в схемах с индуктивной нагрузкой
- •4.6.3. Переключение полевых тиристоров мст в мостовых схемах
- •Заключение
- •Литература
- •Учебное пособие
- •Силовая электроника
4.6.2. Особенности применения igbt в схемах с индуктивной нагрузкой
Осциллограммы переключения IGBT для мостовой схемы в режиме непрерывного тока в обмотке двигателя представлены на рис. 4.76.
Качественно картина процессов коммутации аналогична рассмотренному ранее варианту переключения мощного МДП-транзистора при индуктивной нагрузке (см. раздел 4.5.1).
а б
в
Рис. 4.76
Для практических расчетов используют интегральные характеристики потерь в виде энергетических параметров ЕON и ЕOFF - Нарастание тока ключа при открытом демпферном диоде определяется скоростью заряда входной емкости и силовой крутизной:
(4.113)
Для относительно больших значений параметра крутизны, свойственных IGBT, скорость изменения коллекторного тока может достигать тысяч ампер на микросекунду. При данных скоростях значительно усиливается роль паразитных индуктивностей монтажа схемы. Это приводит, во-первых, к заметному провалу в кривой напряжения коллектор—эмиттер включающегося IGBT на этапе нарастания тока и, во-вторых, к всплеску обратного напряжения на демпферном диоде и закрытом IGBT. Если первый эффект можно рассматривать как положительный, уменьшающий энергию потерь при включении, то второй способен привести к пробою структуры диода, особенно при его резком выключении (рис. 4.77). Кроме того, высокочастотный колебательный процесс генерирует электромагнитные помехи, ухудшающие работу отдельных блоков электронных систем.
Рис. 4.77
Увеличение температуры перехода ключа, свойственное режиму двигательной нагрузки в переходном процессе включения, проявляется следующим образом:
1. Практически не влияет на скорость включения IGBT.
2. Увеличивает обратный заряд восстановления (при одновременном увеличении обратного тока Irr и времени восстановления trr), что увеличивает мощность потерь (рис. 4.78).
а б
Рис. 4.78
Коммутация тока в демпферный диод в переходном процессе выключения начинается в момент, когда напряжение на его аноде достигает величины напряжения питания плеча схемы моста. Перенапряжение в схеме обусловлено конечной скоростью включения диода и пропорционально величине паразитной индуктивности Ls. В момент времени, при котором входное напряжение запираемого ключа уменьшается до порогового значения, стадия быстрого уменьшения тока коллектора переходит в рекомбинационную фазу, сопровождающуюся характерным «хвостом» тока.
Влияние увеличения температуры структуры при выключении проявляется следующим образом:
Увеличивает амплитуду, и длительность хвостовой части тока (особенно заметно для приборов РТ-технологии) (рис. 4.79).
а б
Рис. 4.79
2. Замедляет скорость нарастания напряжения на запираемом ключе (рис. 4.80).
Рис. 4.80
Обе зависимости определяются увеличением накопленного заряда носителей с ростом температуры. Рассмотренные режимы переключения IGBT при двигательной нагрузке определяют следующий перечень требований на применение:
1. Критическим фактором, определяющим предельный режим при включении, является перенапряжение на демпферном диоде. Всплеск перенапряжения необходимо фиксировать в пределах ОБР применением последовательного резистора RG в цепи затвора IGBT (рис. 4.81).
а б
Рис. 4.81
2. Рекомендуется снижать паразитную индуктивность монтажа схемы до уровня 100..150нГн (рис. 4.82).
3. Рекомендуется применение обратных диодов с «мягким» режимом восстановления (рис. 4.83).
Рис. 4.82 Рис. 4.83
4. Критическим фактором, определяющим предельный режим при запирании IGBT, является перенапряжение на ключе, что также требует снижения паразитных индуктивностей и возможно дополнительных цепей защиты (рис. 4.84).
Рис. 4.84