
- •Методика преподавания математики
- •Методика преподавания математики
- •(Часть 3)
- •Утверждаю Декан педагогического факультета
- •Распределение по семестрам при дневной форме обучения
- •Распределение по семестрам при заочной форме обучения
- •Содержание
- •Пояснительная записка
- •Объем дисциплины и виды учебной работы
- •Тема 8. Методика обучения
- •1. План
- •2. Литература
- •2.1. Основная литература
- •2.2. Дополнительная литература
- •2. Контрольные вопросы
- •4 Краткое содержание вопросов плана
- •4.1. Текстовые арифметические задачи
- •4.2. Анализ текста задачи (1 этап)
- •4.2.1 Приемы работы учителя,
- •4.1.2. Варианты организации работы учащихся
- •4.3. Интерпретация условия задачи (2 этап)
- •4.3.1. Краткая запись задачи в виде схемы.
- •4.3.2. Краткая запись задачи в виде таблицы.
- •4.3.3. Краткая запись задачи в виде чертежа.
- •4.3.4. Краткая запись задачи в виде схемы.
- •4.3.5. Краткая запись задачи в виде геометрической иллюстрации.
- •4.3.6. Краткая запись задачи в виде рисунка.
- •4.3.7.Представление содержания задачи в виде реальных моделей
- •4.4 Этап поиска решения простой задачи (3 этап)
- •4.5. Классификация простых задач
- •Классификация простых задач на сложение и вычитание
- •4.6. Основные ошибки учащихся при решении простых задач.
- •4.7. Особенности методики обучения решению некоторым типам простых задач
- •4.7.1. Задачи, раскрывающие смысл операции сложения
- •4.7.2. Задачи, раскрывающие смысл операции вычитания
- •4.7.3. Задачи, раскрывающие связь сложения и вычитания
- •4.7.4. Задачи на увеличение (уменьшение)
- •4.7.5. Задачи на сравнение численности двух множеств
- •4.7.6. Задачи, раскрывающие смысл
- •4.7.7. Задачи, раскрывающие смысл
- •4.7.8. Задачи, раскрывающие связь
- •4.7.9. Задачи на увеличение (уменьшение)
- •4.8. Поиск плана решения составной задачи (3 этап).
- •4.9. Составление плана решения задачи (4 этап).
- •4.10. Запись решения задачи (5 этап).
- •4.11. Методы решения текстовых задач.
- •4.12. Получение ответа на вопрос задачи (6 этап)
- •4.13. Проверка правильности решения (7 этап)
- •4.14. Работа над задачей после ее решения (8 этап).
- •4.15 Методика перехода от простых задач к составным задачам.
- •4.16. Простые задачи с пропорциональными величинами
- •17. Составные задачи в начальной школе:
- •Задачи на нахождение четвертого пропорционального
- •Задачи на пропорциональное деление
- •4.18. Обучение решению задач с пропорциональными величинами
- •5. Практикум
- •5. 1. Практическое занятие
- •6.1. Методические задания для самостоятельной работы
- •5. 2. Практическое занятие
- •6.2. Методические задания для самостоятельной работы
- •5. 3. Практическое занятие
- •6.3. Методические задания для самостоятельной работы
- •5. 4. Практическое занятие
- •6.4. Методические задания для самостоятельной работы
- •5. 5. Практическое занятие
- •6.5. Методические задания для самостоятельной работы
- •Задания для контрольной работы.
- •Лабораторная работа 3
- •Лабораторная работа 4
- •7. Тестовый материал.
- •Тема 9. Методика обучения младших школьников арифметическим действиям Требования к знаниям студентов по теме:
- •Литература
- •2.1. Основная литература
- •2.2. Дополнительная литература
- •3. Контрольные вопросы
- •4. Краткое содержание вопросов плана
- •4.1. Вычислительные приемы сложения и вычитания чисел первого и второго десятка
- •4.1.1. Основные понятия
- •4.1.2. Вычислительные приемы для чисел первого десятка
- •4.1.2. Вычислительные приемы для чисел второго десятка
- •4.2. Вычислительные приемы сложения и вычитания для чисел первой сотни
- •4.2.1. Математические законы и правила,
- •4.2.2. Способы устных вычислений
- •4.3. Вычислительные приемы сложения и вычитания для чисел первой тысячи и многозначных чисел
- •4.3.1. Вычислительные приемы для чисел первой тысячи
- •4.3.2. Вычислительные приемы для многозначных чисел
- •4.4. Умножение
- •4.4.1. Смысл действия умножения.
- •4.4.2. Табличное умножение
- •4.4.3. Приемы запоминания таблицы умножения
- •1. Прием счета двойками, тройками, пятерками
- •2. Прием последовательного сложения
- •3. Прием прибавления слагаемого к предыдущему результату (вычитания из предыдущего результата)
- •4. Прием взаимосвязанной пары: 2 · 6 и 6 · 2 (перестановка множителей)
- •5. Прием запоминания последовательности случаев с ориентиром на возрастание второго множителя
- •6. Прием «порции»
- •7. Прием запоминающегося случая в качестве опорного
- •8. Прием внешней опоры
- •9. Прием запоминания таблицы «с конца»
- •10. Пальцевый счет при запоминании таблицы умножения
- •11. Мнемонические приемы при заучивании таблицы умножения
- •4.5. Деление
- •4.5.1. Смысл действия деления
- •4.5.2. Усвоение учащимися смысла деления
- •4.5.3. Взаимосвязь между компонентами действий
- •1) Произведение делят на множитель.
- •2) Сравнивают полученный результат с другим множителем. Если эти числа равны, умножение выполнено, верно.
- •4.5.4. Табличное умножение и деление
- •4.5.5. Умножение и деление в пределах 100
- •4.5.6.Внетабличное умножение и деление
- •4.5.7. Математические законы и правила,
- •4.5.8. Деление с остатком
- •4.5.9. Приемы умножения и деления
- •4.6. Особые случаи умножения и деления.
- •4.6.1. Внетабличное умножение и деление в пределах 100
- •4.6.2. Приемы устных вычислений умножения и деления
- •4.7. Письменное умножение и деление
- •4.7.1 . Умножение в столбик
- •4.7.2. Деление в столбик
- •4.7.3. Деление на двузначное и трехзначное число
- •8. Порядок действий в выражениях, содержащих умножение и деление
- •1) Если есть скобки, выполняю первым действие, записанное в скобках.
- •2) Выполняю по порядку умножение и деление.
- •3) Выполняю по порядку сложение и вычитание.
- •8. Приемы рациональных вычислений в начальных классах.
- •Устный счет
- •5. Практикум Практическое занятие 1.
- •6. Методические задания для самостоятельной работы
- •Практическое занятие 2.
- •6. Методические задания для самостоятельной работы
- •Практическое занятие 3.
- •6. Методические задания для самостоятельной работы
- •Практическое занятие 4.
- •6. Методические задания для самостоятельной работы
- •Практическое занятие 5.
- •Методические задания для самостоятельной работы
- •Выделить последовательность изучения внетабличного умножения и деления. Заполнить таблицу:
- •Лабораторная работа 5
- •Лабораторная работа 6
- •7. Тестовый материал.
4.5.2. Усвоение учащимися смысла деления
Основой формирования у младших школьников представлений о смысле деления служит теоретико-множественный подход к трактовке частного, суть которого сводится к разбиению конечных множеств на равночисленные подмножества, не имеющие общих элементов. Традиционно, конкретный смысл деления раскрывается путем соответствующих операций над множествами, при решении простых задач на деление по содержанию и деление на равные части.
Выбор этого подхода обусловлен тем, что он позволяет опираться на жизненный опыт ученика (наглядное изображение выполняемых действий, рисунки, практические действия) при введении новой терминологии и математической записи помогает осознать их математический смысл.
Процесс деления на равные части достаточно сложно изобразить на рисунке, целесообразнее выполнять практические действия, а рисунок можно использовать для того, чтобы учащиеся осознали результат выполненного предметного действия.
Например, 6 открыток раздали трем девочкам поровну, сколько открыток у каждой девочки.
□□ □□ □□
Деление по содержанию: девочкам раздали 6 открыток, каждой по две. Сколько девочек получили открытки?
□□ │ □□ │ □□
4.5.3. Взаимосвязь между компонентами действий
умножения и деления
В учебнике дано правило «если произведение двух чисел разделить на один множитель, то получится другой множитель».
Подвести учащихся к выводу этого правила можно с помощью примера: Составьте с числами 4, 7, 28 три примера. Дети должны уметь составить примеры 4 · 7=28, 28:4=7, 28:7=4.
Так же изучается название компонентов и результата деления
Выражение вида 56:8 называют частным. Число 56 – делимое, число 8 – делитель. Число, получаемое в ответе «7» - значение частного.
Перед глазами детей должен быть плакат с названиями компонентов действия.
Внимание детей обращается на взаимосвязь компонентов деления: если делитель умножить на частное, то получим делимое; если делимое разделить на частное, то получится делитель. Это изучается при помощи тройки чисел.
Далее изучаются особые случаи умножения – умножение на 1, умножение на 0.
В третьем классе дети знакомятся с правилом взаимосвязи компонентов умножения. Это правило является основой для обучения нахождению неизвестных компонентов умножения при решении уравнений.
Если произведение разделить на один множитель, то получится другой множитель.
Например:
Решите уравнение 6 • Х. = 24. (В уравнении неизвестен множитель. Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель, Х. = 24:6,
х = 4.)
Однако данное правило в учебнике математики 3 класса не является обобщением представлений школьника о способах проверки действия умножения. Правило проверки результатов умножения рассматривается в учебнике намного позже. Это происходит после знакомства с вне-табличным умножением и делением (знакомства с умножением и делением двузначных чисел на однозначные, не входящим в таблицу умножения и деления). Это объясняется тем, что правило взаимосвязи компонентов умножения, является основой составления таблицы деления.
В 3 классе учащиеся знакомятся с правилом взаимосвязи компонентов деления, которое является основой для обучения нахождению неизвестных компонентов деления при решении уравнений:
Если делитель умножить на частное, то получится делимое.
Если делимое разделить на частное, то получится делитель.
Например:
Решите уравнение 16 : Х. = 2. (В уравнении неизвестен делитель. Чтобы найти неизвестный делитель, нужно делимое разделить на частное. Х. = 16 : 2, Х. = 8.)
Так как предполагается, что табличные случаи умножения ученик к этому времени знает наизусть, то нет необходимости в проверке результатов. Нужно только быстро восстанавливать (вспоминать) нужное третье число по двум данным. Например:
Вычисли
9 · 2 = ... 5 · 4 = ... 1 · 7 = ...
А вот при выполнении устного внетабличного умножения, требующего применения достаточно сложного алгоритма, необходима проверка, так как учащиеся часто ошибаются в этих случаях.
Правило проверки действия умножения: