
- •Методика преподавания математики
- •Методика преподавания математики
- •(Часть 3)
- •Утверждаю Декан педагогического факультета
- •Распределение по семестрам при дневной форме обучения
- •Распределение по семестрам при заочной форме обучения
- •Содержание
- •Пояснительная записка
- •Объем дисциплины и виды учебной работы
- •Тема 8. Методика обучения
- •1. План
- •2. Литература
- •2.1. Основная литература
- •2.2. Дополнительная литература
- •2. Контрольные вопросы
- •4 Краткое содержание вопросов плана
- •4.1. Текстовые арифметические задачи
- •4.2. Анализ текста задачи (1 этап)
- •4.2.1 Приемы работы учителя,
- •4.1.2. Варианты организации работы учащихся
- •4.3. Интерпретация условия задачи (2 этап)
- •4.3.1. Краткая запись задачи в виде схемы.
- •4.3.2. Краткая запись задачи в виде таблицы.
- •4.3.3. Краткая запись задачи в виде чертежа.
- •4.3.4. Краткая запись задачи в виде схемы.
- •4.3.5. Краткая запись задачи в виде геометрической иллюстрации.
- •4.3.6. Краткая запись задачи в виде рисунка.
- •4.3.7.Представление содержания задачи в виде реальных моделей
- •4.4 Этап поиска решения простой задачи (3 этап)
- •4.5. Классификация простых задач
- •Классификация простых задач на сложение и вычитание
- •4.6. Основные ошибки учащихся при решении простых задач.
- •4.7. Особенности методики обучения решению некоторым типам простых задач
- •4.7.1. Задачи, раскрывающие смысл операции сложения
- •4.7.2. Задачи, раскрывающие смысл операции вычитания
- •4.7.3. Задачи, раскрывающие связь сложения и вычитания
- •4.7.4. Задачи на увеличение (уменьшение)
- •4.7.5. Задачи на сравнение численности двух множеств
- •4.7.6. Задачи, раскрывающие смысл
- •4.7.7. Задачи, раскрывающие смысл
- •4.7.8. Задачи, раскрывающие связь
- •4.7.9. Задачи на увеличение (уменьшение)
- •4.8. Поиск плана решения составной задачи (3 этап).
- •4.9. Составление плана решения задачи (4 этап).
- •4.10. Запись решения задачи (5 этап).
- •4.11. Методы решения текстовых задач.
- •4.12. Получение ответа на вопрос задачи (6 этап)
- •4.13. Проверка правильности решения (7 этап)
- •4.14. Работа над задачей после ее решения (8 этап).
- •4.15 Методика перехода от простых задач к составным задачам.
- •4.16. Простые задачи с пропорциональными величинами
- •17. Составные задачи в начальной школе:
- •Задачи на нахождение четвертого пропорционального
- •Задачи на пропорциональное деление
- •4.18. Обучение решению задач с пропорциональными величинами
- •5. Практикум
- •5. 1. Практическое занятие
- •6.1. Методические задания для самостоятельной работы
- •5. 2. Практическое занятие
- •6.2. Методические задания для самостоятельной работы
- •5. 3. Практическое занятие
- •6.3. Методические задания для самостоятельной работы
- •5. 4. Практическое занятие
- •6.4. Методические задания для самостоятельной работы
- •5. 5. Практическое занятие
- •6.5. Методические задания для самостоятельной работы
- •Задания для контрольной работы.
- •Лабораторная работа 3
- •Лабораторная работа 4
- •7. Тестовый материал.
- •Тема 9. Методика обучения младших школьников арифметическим действиям Требования к знаниям студентов по теме:
- •Литература
- •2.1. Основная литература
- •2.2. Дополнительная литература
- •3. Контрольные вопросы
- •4. Краткое содержание вопросов плана
- •4.1. Вычислительные приемы сложения и вычитания чисел первого и второго десятка
- •4.1.1. Основные понятия
- •4.1.2. Вычислительные приемы для чисел первого десятка
- •4.1.2. Вычислительные приемы для чисел второго десятка
- •4.2. Вычислительные приемы сложения и вычитания для чисел первой сотни
- •4.2.1. Математические законы и правила,
- •4.2.2. Способы устных вычислений
- •4.3. Вычислительные приемы сложения и вычитания для чисел первой тысячи и многозначных чисел
- •4.3.1. Вычислительные приемы для чисел первой тысячи
- •4.3.2. Вычислительные приемы для многозначных чисел
- •4.4. Умножение
- •4.4.1. Смысл действия умножения.
- •4.4.2. Табличное умножение
- •4.4.3. Приемы запоминания таблицы умножения
- •1. Прием счета двойками, тройками, пятерками
- •2. Прием последовательного сложения
- •3. Прием прибавления слагаемого к предыдущему результату (вычитания из предыдущего результата)
- •4. Прием взаимосвязанной пары: 2 · 6 и 6 · 2 (перестановка множителей)
- •5. Прием запоминания последовательности случаев с ориентиром на возрастание второго множителя
- •6. Прием «порции»
- •7. Прием запоминающегося случая в качестве опорного
- •8. Прием внешней опоры
- •9. Прием запоминания таблицы «с конца»
- •10. Пальцевый счет при запоминании таблицы умножения
- •11. Мнемонические приемы при заучивании таблицы умножения
- •4.5. Деление
- •4.5.1. Смысл действия деления
- •4.5.2. Усвоение учащимися смысла деления
- •4.5.3. Взаимосвязь между компонентами действий
- •1) Произведение делят на множитель.
- •2) Сравнивают полученный результат с другим множителем. Если эти числа равны, умножение выполнено, верно.
- •4.5.4. Табличное умножение и деление
- •4.5.5. Умножение и деление в пределах 100
- •4.5.6.Внетабличное умножение и деление
- •4.5.7. Математические законы и правила,
- •4.5.8. Деление с остатком
- •4.5.9. Приемы умножения и деления
- •4.6. Особые случаи умножения и деления.
- •4.6.1. Внетабличное умножение и деление в пределах 100
- •4.6.2. Приемы устных вычислений умножения и деления
- •4.7. Письменное умножение и деление
- •4.7.1 . Умножение в столбик
- •4.7.2. Деление в столбик
- •4.7.3. Деление на двузначное и трехзначное число
- •8. Порядок действий в выражениях, содержащих умножение и деление
- •1) Если есть скобки, выполняю первым действие, записанное в скобках.
- •2) Выполняю по порядку умножение и деление.
- •3) Выполняю по порядку сложение и вычитание.
- •8. Приемы рациональных вычислений в начальных классах.
- •Устный счет
- •5. Практикум Практическое занятие 1.
- •6. Методические задания для самостоятельной работы
- •Практическое занятие 2.
- •6. Методические задания для самостоятельной работы
- •Практическое занятие 3.
- •6. Методические задания для самостоятельной работы
- •Практическое занятие 4.
- •6. Методические задания для самостоятельной работы
- •Практическое занятие 5.
- •Методические задания для самостоятельной работы
- •Выделить последовательность изучения внетабличного умножения и деления. Заполнить таблицу:
- •Лабораторная работа 5
- •Лабораторная работа 6
- •7. Тестовый материал.
4.3.2. Вычислительные приемы для многозначных чисел
А) Способы устных вычислений
1. Нумерационные случаи
а) Случаи сложения с единицей и ее вычитание. При выполнении вычислений в этом случае ссылаются на принцип построения натурального ряда чисел.
б) Случаи вида:
90 000+10 000; 987 000 – 87 000; 987 000 + 7
987987 – 7; 345 000 – 45 000; 800 700 + 1 000
При выполнении подобных вычислений опора идет на принцип поразрядного строения чисел в десятичной системе счисления.
2. Сложение и вычитание целых тысяч
Сложение и вычитание вида 32 000 + 2 000, 690 000 - 50 000 является первым вычислительным приемом, с которого начинается формирование устных вычислений в объеме многозначных чисел.
Для освоения этого приема ребенок должен хорошо представлять разрядный состав многозначного числа. Рассматривая 32 000 как 32 тыс. и 2 000 как 2 тыс., прием 32 000 + 2 000 вычисляется, как 32 тыс. + 2 тыс. Ответ 34 тыс. затем рассматривается, как 34 000 и записывается результат вычислений. Таким образом, действия с целыми тысячами рассматриваются как действия с разрядными единицами, вычисления в этом случае сводятся к табличным вычислениям в пределах 10, 20 или к устным вычислениям в пределах 100.
3. Сложение и вычитание целых тысяч на основе правил арифметических действий
Учебник математики для 4 класса практически не предлагает вычислений соответствующего вида, однако учителя часто используют их на устном счете.
К этим случаям относятся вычисления вида: 70200 + 400, 600100 - 99, 3008 + 351,
425100 - 24100 и т. п.
При вычислениях используется знание десятичного состава многозначных чисел и понимание того, что во всех случаях действия затрагивают только часть первого числа (первое число может рассматриваться как сумма). Таким образом, действия могут выполняться только с частью первого числа.
Например:
Вычисляя сумму 70 200 + 400, можно отдельно сложить 400 и 200, а затем их сумму прибавить к числу 70 000. Фактически используется правило прибавления числа к сумме.
Б) Способы письменных вычислений
(вычисления в столбик)
Письменные приемы сложения и вычитания являются основными вычислительными действиями при вычислениях в объеме многозначных чисел. Усвоение школьниками нумерации четырехзначных и многозначных чисел позволяет им осуществить перенос умения складывать и вычитать числа «столбиком» из области трехзначных чисел на область многозначных чисел.
При знакомстве с письменными приемами сложения и вычитания в объеме многозначных чисел проводится аналогия с алгоритмом письменного сложения и вычитания в пределах 1000:
1) Письменное сложение и вычитание любых многозначных чисел выполняется так же, как сложение и вычитание трехзначных чисел.
2) При записи столбиком, как и при сложении трехзначных чисел, следует записывать разряд под соответствующим разрядом, и складывать сначала единицы, потом десятки, а потом сотни, потом тысячи и т. д. (справа налево).
Считается, что учащиеся хорошо научены выполнять действия сложения и вычитания в столбик, поэтому в учебнике 4 класса не предусмотрено распределение случаев сложения и вычитания по уровням сложности.
Первыми рассматриваются различные случаи с переходами через разряд, как при сложении, так и при вычитании:
3 126 + 4 232; 25 346 - 13 407.
Затем рассматриваются случаи вычитания с нулями в уменьшаемом:
600 - 25; 1 000 - 124; 30 007 - 648.
Эти случаи являются наиболее сложными, так как здесь требуется занимать разрядные единицы не из соседних, а из далеко отстоящих разрядов. Эти случаи полезно сначала сопровождать подробной пояснительной записью на доске, чтобы школьники понимали и видели, откуда появляются девятки в «пустых» разрядах.
Например:
_30007
648.
Вычитаю единицы. Из 7 нельзя вычесть 8.
Пробую занять единицу в соседнем разряде.
В разряде десятков, сотен и тысяч нет разрядных единиц, поэтому занимать можно только из разряда десятков тысяч: 30 тыс. - 1 тыс. = 29 тыс. Подписываем 29 над 30.
«Занятую» тысячу представляем в виде суммы 1 тыс. = 1000 = 990 + 10.
Подписываем над разрядами сотен и десятков девятки, а из 10 единиц вычитаем 8, получаем 2 единицы. Но в разряде единиц было 7 единиц. Добавляем их к полученным 2 единицам и пишем в разряде единиц 9.
Вычитаем: 9 дес. - 4 дес. = 5 дес. Пишем 5 в разряде десятков. 9 сот. - 6 сот. = 3 сот. Пишем 3 в разряде сотен.
От десятков тысяч осталось 29 тыс. Пишем 9 в разряде тысяч, 2 - в разряде десятков тысяч.
При изучении сложения и вычитания многозначных чисел рекомендуется повторять и закреплять:
- названия компонентов и результатов действий;
- свойства нахождения неизвестных компонентов действий при проверке результатов вычислений;
- рассматривать закономерности изменения суммы и разности при изменении одного из компонентов действий.
Многие школьники используют калькуляторы как при выполнении вычислений с многозначными числами, так и при проверке результатов. В старших классах не возбраняется использовать калькуляторы при необходимости выполнить громоздкие вычисления (на уроках физики, химии, геометрии). В начальной школе, чтобы стимулировать ученика к использованию умения самостоятельно вычислять в столбик, следует предлагать задания, не позволяющие механического использования калькулятора для вычисления результата. Такими упражнениями могут быть:
- задания на нахождение ошибки в записях или цифрах вычислений;
- задания на прикидку ответа по округленным результатам вычислений;
- задания на восстановление пропущенных цифр в компонентах действий;
- задания на выбор верных ответов из предложенных чисел и т. п.
Учителю следует помнить, что механический характер вычислительных действий с многозначными числами быстро приводит к утомлению учащихся, что провоцирует появление ошибок. Поэтому не стоит задавать подряд больше трех примеров на вычисления с многозначными числами.