- •А.А. Царенко, т.О.Шипко
- •Классификация авиационных поршневых двигателей.
- •Принцип работы поршневого двигателя.
- •Методы повышения мощности поршневых двигателей. Рабочий объем. Коэффициент сжатия.
- •Процесс сгорания топливовоздушной смеси
- •Условия горения твс
- •Способы воспламенения твс
- •Скорость сгорания твс
- •Конфигурация и порядок зажигания двигателя
- •Преждевременная вспышка смеси
- •Детонация
- •Процесс впуска
- •Процесс сжатия
- •Процесс расширения
- •Процесс выпуска
- •Диаграмма газораспределения двигателя
- •Индикаторная диаграмма двигателя
- •Работа цикла
- •Контрольные вопросы по теме №1.
- •Тема 2. Характеристики двигателей
- •Расчет и измерение мощности.
- •Факторы, влияющие на мощность двигателя.
- •Смеси / наклон, преждевременное зажигания.
- •Индикаторный расход топлива
- •Индикаторный кпд
- •Тепловой баланс двигателя
- •Эффективные параметры двигателя Эффективная мощность
- •Мощность механических потерь
- •Мощность привода нагнетателя
- •Механический кпд двигателя
- •Эффективный удельный расход топлива
- •Эффективный кпд двигателя
- •Режимы работы авиационных поршневых двигателей
- •Общие сведения о характеристиках
- •Внешняя характеристика двигателя
- •Винтовая характеристика
- •Высотные характеристики
- •Контрольные вопросы по теме №2.
- •Тема 3. Конструкция двигателя
- •Картер двигателя
- •Кривошипно-шатунный механизм Коленчатый вал. Распределительные валы. Отстойник.
- •Шатун, впускной и выпускной коллекторы
- •Сборка цилиндра и поршня
- •Поршневые кольца
- •Поршневой палец
- •Газораспределительный механизм
- •Клапанный механизм
- •Кулачковая шайба; 2 – толкатель;3 – тяга; 4 – коромысло;
- •Коробка вспомогательных приводов
- •Редукторы воздушного винта
- •Контрольные вопросы по теме №3.
- •Тема 4. Топливные системы двигателя
- •4.1 Карбюратор
- •Беспоплавковый карбюратор с переменным сечением топливного жиклера
- •Типы, строение и принципы работы. Охлаждение и нагревание.
- •Поплавковый карбюратор
- •4.2 Системы впрыска топлива Типы, строение и принципы работы.
- •Особенности применения непосредственного впрыска
- •Контрольные вопросы по теме №4.
- •Тема 5 системы запуска и зажигания Системы запуска Назначение пусковых устройств и требования к ним
- •Основные требования к бортовым пусковым устройствам
- •Запуск сжатым воздухом
- •Запуск рабочей смесью
- •Пиротехнический самопуск ап-3
- •Инерционный стартер ри
- •Системы зажигания Общие сведения о зажигании
- •Агрегаты, входящие в систему зажигания, и их назначение
- •Типы магнето, строение и принципы функционирования. Системы низкого и высокого напряжения.
- •Анализ работы магнето
- •Изменение магнитного потока в сердечнике трансформатора
- •Работа магнето при постоянно разомкнутой первичной цепи
- •Работа магнето при постоянно замкнутой первичной цепи
- •Рабочий процесс магнето
- •Конденсатор
- •Величина зазора между контактами прерывателя
- •Конструкция магнето типа бсм
- •Пусковая катушка
- •Проводка системы зажигания, свечи зажигания
- •Переключатель
- •Порядок присоединения проводов к свечам
- •Принципиальная схема системы зажигания двигателя
- •Высотность системы зажигания
- •Магнето для многоцилиндровых двигателей
- •Контрольные вопросы по теме №5
- •Тема 6 впускная, выхлопная и охладительная системы впускная система Устройство и работа всасывающих систем, включая запасные воздушные системы
- •Воздушные фильтры
- •Охлаждение воздуха после нагнетателя
- •Выхлопные системы
- •Основные требования к выхлопным коллекторам
- •Выхлопные коллекторы звездообразных моторов
- •Выхлопные коллекторы рядных моторов
- •Расположение коллектора в капоте
- •Глушители
- •Системы охлаждения двигателя Общие сведения
- •Воздушное охлаждение двигателя
- •Капоты двигателей воздушного охлаждения
- •Принудительное воздушное охлаждение
- •Жидкостное охлаждение двигателя
- •Устройство и работа агрегатов системы жидкостного охлаждения
- •Контроль и регулировка охлаждения двигателя
- •Преимущества и недостатки воздушного и жидкостного охлаждения. Особенности эксплуатации системы охлаждения
- •Контрольные вопросы по теме №6.
- •Тема 7 наддув/турбонаддув Принципы и назначение наддува и его влияние на параметры двигателя
- •Устройство и работа систем наддува / турбонаддува. Системная терминология.Системы управления.
- •Мощность, затрачиваемая на нагнетатель
- •Турбокомпрессоры
- •Сравнение двигателей с турбокомпрессором и двигателей с пцн
- •Комбинированный наддув
- •Защита систем
- •Контрольные вопросы по теме №7
- •Тема 8 масла и топлива Свойства и спецификации Топлива для поршневых двигателей
- •Масла для поршневых двигателей
- •Техническая характеристика
- •Присадки к топливу.Меры.
- •Катализаторы горения.
- •Тема 9 системы смазки Виды трения
- •Трение скольжения
- •Трение качения
- •Назначение смазки в авиационном двигателе
- •Способы смазки трущихся частей двигателя
- •Функционирование / план и элементы системы.
- •Внешняя система смазки двигателя
- •Внутренняя система смазки двигателя
- •Контрольные вопросы по теме №9
- •Тема 10 системы индикации двигателей Скорость двигателя
- •Температура головки цилиндра. Температура выходящих газов
- •Давление и температура масла. Давление топлива.
- •Расход топлива
- •Давление наддува.
- •Топливомер
- •Контрольные вопросы по теме №10.
- •Тема 11 размещение силовой установки Конструктивные мероприятия, направленные на обеспечение пожарной безопасности
- •Конфигурация противопожарных перегородок
- •Конфигурация обечаек
- •Конфигурация звукопоглощающих панелей
- •Конфигурация подвесок двигателя, виброизолирующих опор
- •Обвязка авиационных гтд
- •Конфигурация шлангов, труб
- •Конфигурация фидеров, соединителей, оплетки
- •Конфигурация тросов управления и тяг системы управления
- •Конфигурация точек подъема и стоков
- •Контрольные вопросы по теме №11
- •Тема 12. Проверка двигателя и эксплуатация на земле Процедуры запуска и гонки двигателя на земле
- •Интерпретация мощности и параметров двигателя
- •Проверка двигателя и его деталей: критерии, допустимые отклонения и данные, указанные производителем двигателя. Техническое обслуживание и эксплуатация деталей цилиндро-поршневой группы
- •I группа неисправностей
- •II группа неисправностей
- •Неисправности коленчатого вала
- •Техническое обслуживание механизма газораспределения
- •Съемник; 2- поддержка; 3- дюритовый шланг;
- •Неисправности деталей механизма газораспределения, их причины, устранение и предупреждение
- •Неисправности нагнетателя, их определение, устранение и предупреждение
- •Техническое обслуживание картера
- •Техническое обслуживание приводов агрегатов
- •Неисправности масляной системы, их признаки, способы определения и предупреждения
- •Техническое обслуживание масляной системы
- •Техническое обслуживание топливной системы
- •Неисправности топливного насоса, их причины, способы определения и устранения
- •Техническое обслуживание системы зажигания
- •Неисправности системы зажигания
- •Контрольные вопросы по теме №12.
- •Тема 13. Хранение и консервация двигателя Материалы и тара, применяемые при консервации двигателя
- •Консервация двигателя и деталей / систем
- •Разконсервация двигателя и деталей / систем
- •Контрольные вопросы по теме №13.
- •Список использованной литературы
Процесс впуска
Назначение процесса впуска
Назначение процесса впуска состоит в заполнении рабочего объема цилиндра двигателя
топливовоздушной смесью, содержащей химическую энергию, необходимую для получения работы. При этом весьма важно заполнять цилиндр максимально возможным количеством смеси, так как это способствует получению наибольшей работы, а следовательно, и мощности при данном объеме цилиндров и частоте вращения коленвала. В большинстве современных авиационных двигателей увеличение заряда смеси (воздуха) в цилиндре достигается при помощи нагнетателя. Питание двигателя топливовоздушной смесью, давление которой предварительно увеличено в нагнетателе до давления, превышающего атмосферное, называется наддувом. Двигатели, не имеющие нагнетателя, принято называть двигателями с впуском из атмосферы. В двигателях с карбюратором смесеобразование начинается в карбюраторе, продолжается во всасывающих трубопроводах и заканчивается в цилиндре двигателя. Для регулирования количества смеси, поступающей в двигатель, служит дроссельная заслонка, устанавливаемая между карбюратором и цилиндрами. Регулировка качества топливовоздушной смеси, т. е. коэффициента избытка, осуществляется посредством специальных устройств, являющихся принадлежностью карбюратора. Начало впуска топливовоздушной смеси обусловливается началом открытия клапана впуска (рис. 1-15). Последний в современных поршневых двигателях открывается с опережением (точка 1), т. е. в конце такта выпуска, до прихода поршня в ВМТ. Это объясняется, во-первых, стремлением увеличить заряд свежей смеси за счет большего открытия впускного клапана к началу такта впуска и, во-вторых, тем, что у двигателей с наддувом свежая смесь, имеющая большее давление, чем давление выпускных газов в цилиндре, начнет поступать в этом случае в конце такта выпуска и вытеснять из цилиндра продукты сгорания. Последнее называется продувкой камеры сгорания. В результате этой продувки очистка цилиндра от остаточных газов улучшается и заряд свежей смеси увеличивается.
Рис.1-15. Процесс впуска:
1— момент открытия впускного клапана; 2— момент закрытия впускного клапана
Угол, на который поворачивается коленчатый вал за время от момента открытия впускного клапана до момента прихода поршня в ВМТ, называется углом опережения открытия впускного клапана. Этот угол подбирается опытным путем для каждого типа двигателя и обычно лежит в пределах 15 ÷ 50°. Для двигателя АШ-62ИР угол опережения открытия клапана впуска равен 15÷25°. Свежая топливовоздушная смесь поступает в цилиндр под влиянием понижения давления в цилиндре, создающегося вследствие движения поршня от ВМТ к НМТ.
Понижение давления в цилиндре объясняется всасывающим действием поршня и сопротивлениямикоторые встречает ТВС на своем пути при движении к цилиндру (рис. 1-16).
Сопротивление при движении воздуха возникает в результате трения частиц воздуха друг о друга, о стенки впускного трубопровода, о впускной клапан, а также от удара частиц воздуха о стенки впускного трубопровода в местах его изгиба, о дроссельную заслонку и впускной клапан. Эти сопротивления называются гидравлическими.
Так как скорость движения воздуха во впускных трубопроводах и впускных клапанах цилиндров достаточно велика (40 ÷ 60 м/сек), то гидравлические сопротивления получаются значительными. Если дроссельная заслонка прикрывается, проходное сечение для воздуха уменьшается, гидравлические сопротивления увеличиваются, и давление в цилиндре в конце такта впуска понижается до 0,3÷ 0,5 от давления на впуске.
Рис. 1-16. Сопротивление движения ТВС на пути в цилиндр
Следует отметить, что смесь в двигателе с нагнетателем начинает поступать в цилиндр сразу же после открытия клапана впуска, так как давление смеси больше давления продуктов сгорания, оставшихся в цилиндре к концу выпуска (остаточных газов).
Давление остаточных газов при выпуске в атмосферу составляет обычно (1,05÷1,10) ро.
Температура свежей смеси в процессе впуска также изменяется. За счет испарения топлива температура смеси понижается. Вместе с тем, поступая в цилиндр, смесь нагревается в результате соприкосновения с нагретыми деталями двигателя (стенками головки и цилиндра, днищем поршня, клапанами) и смешения воздуха с остаточными газами, температура которых перед началом впуска достигает 1000 ÷ 1100 К. Вследствие указанных причин температура смеси в конце впуска составляет у двигателей с наполнением из атмосферы 340 ÷ 360 К., а у двигателей с нагнетателем 380 ÷ 400 К. Более высокие температуры, наблюдающиеся во втором случае, объясняются подогревом воздуха (смеси) при сжатии его в нагнетателе.
Окончание наполнения цилиндра смесью определяется моментом закрытия впускного клапана. Впускной клапан закрывается с запаздыванием (см. точку 2 на рис. 1-15), т. е. после прихода поршня в НМТ, в начале такта сжатия. Запаздывание закрытия впускного клапана увеличивает количество свежей смеси, поступающей в цилиндр. Это объясняется тем, что в течение процесса впуска смесь приобретает большую скорость и по инерции продолжает поступать в цилиндр, несмотря на изменение направления движения поршня. Кроме того, в начале такта сжатия в цилиндре еще имеется пониженное давление, что также способствует поступлению смеси. Угол, на который поворачивается коленчатый вал, считая от момента прихода поршня в НМТ до момента закрытия впускного клапана, называется углом запаздывания закрытия впускного клапана. Этот угол для каждого типа двигателя подбирается опытным путем и составляет 40 ÷ 65°. Для двигателя АШ-62ИР угол запаздывания равен 44°.
Продолжительность процесса впуска, выраженная в градусах поворота коленчатого вала, значительно больше 180° и составляет, например, для двигателя АШ-62ИР 239 ÷ 249°. Продолжительность открытия клапана, выраженная в градусах поворота коленчатого вала, называется периодом или фазой открытия впускного клапана. Опережение открытия впускного клапана и запаздывание его закрытия увеличивают продолжительность впуска смеси в цилиндр двигателя и способствуют повышению количества поступающей в него смеет.
Весовой заряд и коэффициент наполнения
Как мы уже отметили выше, мощность, развиваемая двигателем, в первую очередь зависит от количества топливовоздушной смеси, поступившей в цилиндр в такте впуска. Чем больше топливовоздушной смеси поступит в цилиндр двигателя, тем большую мощность разовьет двигатель.
Весовым зарядом цилиндра называют весовое количество топливовоздушной смеси, поступившей в цилиндр за время такта впуска и оставшееся в цилиндре к моменту закрытия клапанов впуска. Различают теоретический весовой заряд и действительный весовой заряд смеси. Под теоретическим весовым зарядом смеси qт понимают заряд, который может поместиться в рабочем объеме цилиндра при давлении и температуре, равных давлению и температуре на впуске в цилиндр двигателя.
где γк — удельный вес ТВС на впуске в цилиндр двигателя.
Под действительным весовым зарядом qд понимают заряд, который в действительности поступил в цилиндр и остался в нем.
В двигателях с впуском из атмосферы действительный весовой заряд получается всегда на 10—15% меньше теоретического. Это происходит за счет гидравлических потерь во впускных трубопроводах, влияния остаточных газов и нагрева смеси от стенок в процессе впуска.
В двигателях с нагнетателем теоретический и действительный весовые заряды возрастают за счет увеличения плотности смеси на впуске. В этом случае действительный весовой заряд может быть я больше теоретического весового заряда. Объясняется это тем, что давление остаточных газов в камере сгорания меньше давления наддува и, следовательно, после открытия впускного клапана некоторое количество смеси может поступить в нее за счет сжатия остаточных газов до давления, существующего на впуске.
Отношение действительного весового заряда смеси к теоретическому называется коэффициентом наполнения и обозначается ηv.
Отсюда действительный весовой заряд равен
Величина коэффициента наполнения характеризует степень заполнения цилиндров двигателя топливовоздушной смесью.
Для двигателей с впуском из атмосферы коэффициент наполнения составляет ηv = 0,85÷0,90.
Для двигателя с нагнетателем коэффициент наполнения может быть больше единицы и достигает величин ηv = 1,10÷1,12.
Увеличить действительный весовой заряд цилиндра можно, как это видно из уравнения, путем увеличения плотности ТВС на впуске и увеличения коэффициента наполнения.
Так как удельный вес прямо пропорционален давлению и обратно пропорционален температуре, если мы будем снижать температуру ТВС и увеличивать наддув, то этим самым будем увеличивать его удельный вес, а следовательно, и весовой заряд цилиндра. У некоторых двигателей с нагнетателями для охлаждения воздуха на выходе из нагнетателя устанавливают радиаторы, которые позволяют при том же давлении наддува получить более значительный удельный вес воздуха.
Коэффициент наполнения можно увеличить правильным выбором фаз газораспределения (моментов открытия и закрытия впускного клапана), уменьшением гидравлических потерь путем увеличения проходных сечений трубопроводов и придания им плавных переходов, а также увеличением проходного сечения во впускном клапане.
Графическое изображение процесса впуска
Схематическое изображение процесса впуска для двигателя без нагнетателя и двигателя с нагнетателем в координатах р—V показано на рис. 1-17, а и б.
Точка 1 характеризует момент открытия, а точка 2 — момент закрытия впускного клапана. Линия «l-r-a-2» показывает изменение давления ТВС в цилиндре в процессе впуска.
Для двигателя без нагнетателя линия впуска расположена ниже линии атмосферного давления ро, а для двигателя с нагнетателем — выше нее, вследствие наддува, создаваемого нагнетателем.
Рассмотрим работу, совершаемую поршнем за период такта впуска.
У двигателя без нагнетателя поршень при движении от ВМТ к НМТ должен преодолеть
противодействующую силу, направленную по оси цилиндра к ВМТ и возникающую вследствие создавшейся разности давлений (ро — ра). атмосферного давления ро (в картере) и пониженного давления в цилиндре ра.
Эта противодействующая сила равна произведению разности давлений ро — ра на площадь поршня F т. е.
Работа, совершаемая поршнем при движении от ВМТ к НМТ, будет равна
так как F S = Vh ,
то
Этой работе соответствует заштрихованная площадь на рисунке 1-17,а с высотой ро — ра и длиной Vh.
Рис. 1-17. Графическое изображение процесса впуска:
а— двигатель без нагнетателя; б— двигатель с нагнетателем
В двигателе с нагнетателем (рис. 1-17,б) давление в цилиндре во время впуска больше, чем давление в картере. Поэтому при движении поршня от ВМТ к НМТ на него будет действовать сила, направленная к НМТ и равная
Эта сила будет способствовать вращению коленчатого вала и, таким образом, совершать положительную работу. Этой работе соответствует на рис. 1-17,б заштрихованная площадь, равная
Таким образом, в двигателе с впуском из атмосферы от коленчатого вала отнимается работа на
осуществление процесса впуска, тогда как в двигателе с нагнетателем коленчатому валу сообщается дополнительная работа за счет избыточного давления, создаваемого нагнетателем.
