
- •А.А. Царенко, т.О.Шипко
- •Классификация авиационных поршневых двигателей.
- •Принцип работы поршневого двигателя.
- •Методы повышения мощности поршневых двигателей. Рабочий объем. Коэффициент сжатия.
- •Процесс сгорания топливовоздушной смеси
- •Условия горения твс
- •Способы воспламенения твс
- •Скорость сгорания твс
- •Конфигурация и порядок зажигания двигателя
- •Преждевременная вспышка смеси
- •Детонация
- •Процесс впуска
- •Процесс сжатия
- •Процесс расширения
- •Процесс выпуска
- •Диаграмма газораспределения двигателя
- •Индикаторная диаграмма двигателя
- •Работа цикла
- •Контрольные вопросы по теме №1.
- •Тема 2. Характеристики двигателей
- •Расчет и измерение мощности.
- •Факторы, влияющие на мощность двигателя.
- •Смеси / наклон, преждевременное зажигания.
- •Индикаторный расход топлива
- •Индикаторный кпд
- •Тепловой баланс двигателя
- •Эффективные параметры двигателя Эффективная мощность
- •Мощность механических потерь
- •Мощность привода нагнетателя
- •Механический кпд двигателя
- •Эффективный удельный расход топлива
- •Эффективный кпд двигателя
- •Режимы работы авиационных поршневых двигателей
- •Общие сведения о характеристиках
- •Внешняя характеристика двигателя
- •Винтовая характеристика
- •Высотные характеристики
- •Контрольные вопросы по теме №2.
- •Тема 3. Конструкция двигателя
- •Картер двигателя
- •Кривошипно-шатунный механизм Коленчатый вал. Распределительные валы. Отстойник.
- •Шатун, впускной и выпускной коллекторы
- •Сборка цилиндра и поршня
- •Поршневые кольца
- •Поршневой палец
- •Газораспределительный механизм
- •Клапанный механизм
- •Кулачковая шайба; 2 – толкатель;3 – тяга; 4 – коромысло;
- •Коробка вспомогательных приводов
- •Редукторы воздушного винта
- •Контрольные вопросы по теме №3.
- •Тема 4. Топливные системы двигателя
- •4.1 Карбюратор
- •Беспоплавковый карбюратор с переменным сечением топливного жиклера
- •Типы, строение и принципы работы. Охлаждение и нагревание.
- •Поплавковый карбюратор
- •4.2 Системы впрыска топлива Типы, строение и принципы работы.
- •Особенности применения непосредственного впрыска
- •Контрольные вопросы по теме №4.
- •Тема 5 системы запуска и зажигания Системы запуска Назначение пусковых устройств и требования к ним
- •Основные требования к бортовым пусковым устройствам
- •Запуск сжатым воздухом
- •Запуск рабочей смесью
- •Пиротехнический самопуск ап-3
- •Инерционный стартер ри
- •Системы зажигания Общие сведения о зажигании
- •Агрегаты, входящие в систему зажигания, и их назначение
- •Типы магнето, строение и принципы функционирования. Системы низкого и высокого напряжения.
- •Анализ работы магнето
- •Изменение магнитного потока в сердечнике трансформатора
- •Работа магнето при постоянно разомкнутой первичной цепи
- •Работа магнето при постоянно замкнутой первичной цепи
- •Рабочий процесс магнето
- •Конденсатор
- •Величина зазора между контактами прерывателя
- •Конструкция магнето типа бсм
- •Пусковая катушка
- •Проводка системы зажигания, свечи зажигания
- •Переключатель
- •Порядок присоединения проводов к свечам
- •Принципиальная схема системы зажигания двигателя
- •Высотность системы зажигания
- •Магнето для многоцилиндровых двигателей
- •Контрольные вопросы по теме №5
- •Тема 6 впускная, выхлопная и охладительная системы впускная система Устройство и работа всасывающих систем, включая запасные воздушные системы
- •Воздушные фильтры
- •Охлаждение воздуха после нагнетателя
- •Выхлопные системы
- •Основные требования к выхлопным коллекторам
- •Выхлопные коллекторы звездообразных моторов
- •Выхлопные коллекторы рядных моторов
- •Расположение коллектора в капоте
- •Глушители
- •Системы охлаждения двигателя Общие сведения
- •Воздушное охлаждение двигателя
- •Капоты двигателей воздушного охлаждения
- •Принудительное воздушное охлаждение
- •Жидкостное охлаждение двигателя
- •Устройство и работа агрегатов системы жидкостного охлаждения
- •Контроль и регулировка охлаждения двигателя
- •Преимущества и недостатки воздушного и жидкостного охлаждения. Особенности эксплуатации системы охлаждения
- •Контрольные вопросы по теме №6.
- •Тема 7 наддув/турбонаддув Принципы и назначение наддува и его влияние на параметры двигателя
- •Устройство и работа систем наддува / турбонаддува. Системная терминология.Системы управления.
- •Мощность, затрачиваемая на нагнетатель
- •Турбокомпрессоры
- •Сравнение двигателей с турбокомпрессором и двигателей с пцн
- •Комбинированный наддув
- •Защита систем
- •Контрольные вопросы по теме №7
- •Тема 8 масла и топлива Свойства и спецификации Топлива для поршневых двигателей
- •Масла для поршневых двигателей
- •Техническая характеристика
- •Присадки к топливу.Меры.
- •Катализаторы горения.
- •Тема 9 системы смазки Виды трения
- •Трение скольжения
- •Трение качения
- •Назначение смазки в авиационном двигателе
- •Способы смазки трущихся частей двигателя
- •Функционирование / план и элементы системы.
- •Внешняя система смазки двигателя
- •Внутренняя система смазки двигателя
- •Контрольные вопросы по теме №9
- •Тема 10 системы индикации двигателей Скорость двигателя
- •Температура головки цилиндра. Температура выходящих газов
- •Давление и температура масла. Давление топлива.
- •Расход топлива
- •Давление наддува.
- •Топливомер
- •Контрольные вопросы по теме №10.
- •Тема 11 размещение силовой установки Конструктивные мероприятия, направленные на обеспечение пожарной безопасности
- •Конфигурация противопожарных перегородок
- •Конфигурация обечаек
- •Конфигурация звукопоглощающих панелей
- •Конфигурация подвесок двигателя, виброизолирующих опор
- •Обвязка авиационных гтд
- •Конфигурация шлангов, труб
- •Конфигурация фидеров, соединителей, оплетки
- •Конфигурация тросов управления и тяг системы управления
- •Конфигурация точек подъема и стоков
- •Контрольные вопросы по теме №11
- •Тема 12. Проверка двигателя и эксплуатация на земле Процедуры запуска и гонки двигателя на земле
- •Интерпретация мощности и параметров двигателя
- •Проверка двигателя и его деталей: критерии, допустимые отклонения и данные, указанные производителем двигателя. Техническое обслуживание и эксплуатация деталей цилиндро-поршневой группы
- •I группа неисправностей
- •II группа неисправностей
- •Неисправности коленчатого вала
- •Техническое обслуживание механизма газораспределения
- •Съемник; 2- поддержка; 3- дюритовый шланг;
- •Неисправности деталей механизма газораспределения, их причины, устранение и предупреждение
- •Неисправности нагнетателя, их определение, устранение и предупреждение
- •Техническое обслуживание картера
- •Техническое обслуживание приводов агрегатов
- •Неисправности масляной системы, их признаки, способы определения и предупреждения
- •Техническое обслуживание масляной системы
- •Техническое обслуживание топливной системы
- •Неисправности топливного насоса, их причины, способы определения и устранения
- •Техническое обслуживание системы зажигания
- •Неисправности системы зажигания
- •Контрольные вопросы по теме №12.
- •Тема 13. Хранение и консервация двигателя Материалы и тара, применяемые при консервации двигателя
- •Консервация двигателя и деталей / систем
- •Разконсервация двигателя и деталей / систем
- •Контрольные вопросы по теме №13.
- •Список использованной литературы
Принцип работы поршневого двигателя.
Поршневой двигатель работает на принципе преобразования тепловой энергии в механическую. Рассмотрим, как практически осуществляется этот принцип (рис. 1-4). Через трубопровод 4 подается топливовоздушная смесь (ТВС) по стрелке "А". К моменту подачи топлива в камеру сгорания 6 открывается впускной клапан 5. После заполнения камеры сгорания впускной клапан закрывается и к свече 8 подается высокое электрическое напряжение. В свече возникает электрическая искра, которая поджигает ТВС. Топливовоздушная смесь, быстро сгорая, расширяется, в камере сгорания возникает значительное давление сгоревших газов. Это давление, действуя на поршень 3, заставляет его двигаться вниз в цилиндре 2 и через шатун 9 движение передается коленчатому валу 10, который вращается по стрелке "В". Коленчатый вал, вращаясь, перемещает поршень вверх и через открытый выпускной клапан 7 продукты сгорания удаляются из двигателя в атмосферу (по стрелке "Б"). Коленчатый вал вращается в корпусе 1, который носит название картера. К передней части коленчатого вала может быть присоединен редуктор, вращение которого передается воздушному винту самолета.
Рассмотрим подробно схему работы четырехтактного поршневого двигателя, применяющегося сегодня в авиационном двигателестроении.
В четырехтактном поршневом двигателе внутреннего сгорания чередующиеся процессы преобразования тепловой энергии в механическую осуществляются в следующем порядке (рис. 1-5):
— поступление ТВС в камеру сгорания — впуск (первый такт);
— сжатие поступившей смеси (второй такт);
— расширение после сгорания смеси (третий такт);
— выпуск сгоревших газов (четвертый такт).
В начале такта впуска поршень 1 находится в верхнем положении. На рис. 1-3 это положение отмечено линией с обозначением ВМТ (верхняя мертвая точка). Нижнее положение поршня отмечено линией НМТ — нижняя мертвая точка. Таким образом, поршень во всех тактах перемещается от ВМТ к НМТ.
В первом такте (впуск) поршень, двигаясь вниз, при открытом впускном клапане 4 дает возможность смеси заполнить цилиндр 6. В процессе впуска цилиндр заполняется свежей ТВС. Чем больше попадет смеси в цилиндр к моменту закрытия впускного клапана, тем большую мощность может развивать двигатель.
Во втором такте (сжатие) коленчатый вал 3 через шатун 2 передает движение поршню 1, и он перемещается вверх, сжимая поступившую в цилиндр горючую смесь. В этот момент впускной клапан закрыт. Сжатие горючей смеси производится для того, чтобы обеспечить высокое давление. При большем давлении в процессе расширения будет выполнена большая работа.
В третьем такте (расширение) при закрытых клапанах впуска и выпуска в верхнюю часть цилиндра, в пространство над поршнем, находящимся в ВМТ, подается искра, от которой зажигается ТВС.
Сгорание начинается в конце такта сжатия. Сгорание топлива, входящего в топливовоздушную смесь, — химический процесс окисления углерода и водорода кислородом воздуха. В результате при полном сгорании образуются углекислый газ СО и вода Н2О. При неполном сгорании к ним добавляется окись углерода СО.
Рис.1-4. Принципиальная схема поршневого двигателя:
1— картер; 2— цилиндр; 3— поршень; 4— трубопровод подачи ТВС; 5— впускной клапан; 6— камера сгорания; 7— выпускной клапан; 8— свеча; 9— шатун; 10— коленчатый вал
Рис. 1-5. Схема работы четырехтактного поршневого двигателя:
1— поршень; 2— шатун; 3— коленчатый вал; 4— впускной клапан; 5— выпускной клапан; 6— цилиндр
Быстро расширяясь, сгоревшие газы толкают поршень вниз. Через шатун коленчатому валу придается вращательное движение. Поршень опускается до НМТ. Процесс расширения — основной процесс, так как именно здесь совершается работа по преобразованию тепла в механическую работу.
В четвертом такте (выпуск) поршень из НМТ поднимается, выталкивая сгоревшие газы через открытый клапан выпуска 5. Процесс выпуска заканчивается в момент закрытия выпускного клапана.
Все четыре такта в четырехтактном поршневом двигателе совершаются за два оборота коленчатого вала. Все процессы, происходящие в цилиндре двигателя, выполняются за два оборота коленчатого вала или четыре хода поршня и называются циклом двигателя. Цикл двигателя начинается с первого такта и заканчивается четвертым. Затем весь процесс снова повторяется, наступает следующий цикл. Поршневые двигатели, имеющие такой цикл, называются четырехтактными.
В описанной выше схеме на рис. 1-2 и 1-3 показан ПД с одним цилиндром. Из приведенного описания следует, что тепловая энергия сгоревшей смеси превращается в механическую работу только в третьем такте (расширение). Вот почему в одноцилиндровом двигателе вращение коленчатого вала не может быть равномерным, да и мощность один цилиндр выдает весьма малую. Поэтому поршневые двигатели делают многоцилиндровыми.
Кривошипно-шатунный механизм. Геометрические параметры ПД.
Как было сказано выше, поршень совершает возвратно-поступательные перемещения от верхней мертвой точки (ВМТ) до нижней мертвой точки (НМТ). Коленчатый вал двигателя при этом вращается. Передача перемещения от поршня к коленчатому валу двигателя производится при помощи кривошипно-шатунного механизма. Т.е. можно сказать, что кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Основные части кривошипно-шатунного механизма: поршень, шатун и кривошип (рис.1-6). Конструктивно кривошип выполнен как составная часть коленчатого вала.
Очевидно, что положения ВМТ и НМТ определяются длиной шатуна и радиусом кривошипа. Длина шатуна — это расстояние от оси поршневой (верхней) головки шатуна до оси кривошипной (нижней) головки шатуна. Обозначается длина шатуна буквой L. Радиус кривошипа — это расстояние от оси коренной шейки до оси шатунной шейки. Обозначается радиус кривошипа буквой R. Проходимое поршнем расстояние между ВМТ и НМТ называется ходом поршням и обозначается буквой S. Ход поршня осуществляется за пол-оборота коленчатого вала, т.е. за 180°, и равен двум радиусам кривошипа: S = 2R.
Перемещение поршня в цилиндре вызывает изменение его внутреннего объема. При этом различают три характерных объема цилиндра: объем камеры сжатия, рабочий объем и полный объем.
Объем цилиндра над поршнем, когда последний находится в ВМТ, называется камерой сжатия или камерой сгорания и обозначается VС.
Рис. 1-6. Кривошипно-шатунный механизм:
1— поршень; 2 — шатун; 3— коленчатый вал
Объем цилиндра, соответствующий ходу, поршня S, называется рабочим объемом. Он обозначается Vh.
Его можно определить, зная диаметр цилиндра D и ход поршня S:
Рабочий объем всех цилиндров двигателя носит название литража и равен:
где i— число, цилиндров двигателя.
Объем цилиндра, ограничиваемый поршнем при его положении в НМТ, называется, полным объемом цилиндра и обозначается Vа. Очевидно, что: Va = Vc + Vh.
Отношение полного объема цилиндра к объему камеры сгорания называется степенью сжатия и обозначается буквой ε, т. е.
Степень сжатия в авиационных поршневых двигателях лежит в пределах 5 ÷ 8.
Механический, тепловой и объемный КПД. Рабочие циклы.
Диаграмма идеального рабочего цикла поршневого двигателя
Рабочий цикл – это совокупность циклически повторяющихся термодинамических процессов в цилиндре поршневого двигателя. В ходе цикла изменяются параметры рабочего тела (воздуха). Цикл, как было сказано выше, включает в себя 4 такта, соответствующим 2 оборотам коленчатого вала. Рассмотрим, как изменяются параметры рабочего тела в цилиндре ПД за один цикл, и построим график зависимости давления в цилиндре (р) от его объема (V). В результате получим замкнутую кривую, которая называется индикаторной диаграммой двигателя.
Приведем условия, при которых рабочий цикл ПД считается идеальным:
— отвода тепла через стенки поршня и цилиндра не происходит;
— сопротивления перетеканию воздуха (газа) в каналах впуска и выпуска нет;
— давление воздуха в каналах впуска и выпуска равно атмосферному (ро),
— давление воздуха во внутренних объемах двигателя равно атмосферному;
— клапаны открываются и закрываются в ВМТ и НМТ с бесконечно большой скоростью;
— ТВС в цилиндре сгорает с бесконечно большой скоростью.
1. Такт «впуск».
Клапан впуска открыт, клапан выпуска закрыт, поршень перемещается от ВМТ к НМТ, рабочий объем цилиндра возрастает и заполняется топливовоздушной смесью. Так как клапан впуска открыт, давление в цилиндре постоянно и равно атмосферному. Такту впуска соответствует линия «ra» на графике (рис.1-7).
2. Такт «сжатие».
Оба клапана закрыты, поршень перемещается от НМТ к ВМТ, происходит адиабатическое сжатие ТВС. Такту сжатия соответствует линия «aс» на графике (рис.1-7).
5. Такт «расширение».
Оба клапана закрыты, в ВМТ происходит подача напряжения на свечи и воспламенение ТВС, происходит резкий рост давления и температуры газа при постоянном объеме. Затем поршень под действием высокого давления газа перемещается от ВМТ к НМТ, передавая усилие на коленчатый вал двигателя. Такту расширения соответствуют две линии на графике: линия «сz» – горение ТВС, линия «zb» – адиабатическое расширение газа.
6. Такт «выпуск».
Клапан впуска закрыт, клапан выпуска открыт, поршень перемещается от НМТ к ВМТ, цилиндр освобождается от продуктов сгорания. Такту выпуска соответствуют две линии на графике: линия «ba» – падение давления в цилиндре после открытия выпускного клапана, линия «ar» – вытеснение продуктов сгорания при движении поршня. Так как при движении поршня клапан выпуска остается открытым давление в цилиндре равно атмосферному.
Рис.1-7. Индикаторная диаграмма идеального рабочего цикла поршневого двигателя
Тогда в целом для рабочего цикла можно сказать: работа расширения-сжатия газа в цилиндре ПД за один цикл будет равна сумме работ в каждом из тактов. Эта работа называется работой цикла.
Lц = Lвп + Lсж + Lрасш + Lвып,
Где Lц— работа цикла— работа, вырабатываемая одним цилиндром ПД за один цикл (4 такта);
Lвп— работа такта впуска — работа, затрачиваемая на перемещение поршня при заполнении цилиндра ТВС;
Lсж— работа такта сжатия— работа, затраченная на адиабатическое сжатие газа в цилиндре двигателя.
Lрасш— работа такта расширения— работа, производимая расширяющимся газом.
Lвып— работа такта выпуска — работа, затрачиваемая на перемещение поршня при удалении продуктов сгорания из цилиндра.
С учетом принятых допущений и рассмотренной выше схемы работы, можно сделать вывод, что работа в такте впуска и выпуска равны нулю. Это объясняется равенством давлений в камере сгорания и во внутреннем объеме двигателя, поэтому суммарная сила, действующая на поршень в тактах впуска и выпуска равна нулю, следовательно, равна нулю и работа на перемещение поршня (Lвп=0, Lвып=0).
Из анализа схемы работы ПД можно сказать, что работа расширения является положительной (Lрасш > 0 ) т.к. сгоревшие газы перемещают поршень и через шатун коленчатому валу придается вращательное движение. Работа сжатия отрицательна (Lсж <0 ) т.к. необходимо затратить работу на сжатие газа. Тогда, преобразовав формулу (4) с учетом знака работы для идеального цикла, можно записать:
Lц = Lрасш— Lсж
Как известно из термодинамики (см. приложение 1-2) работа расширения-сжатия газа эквивалентна площади фигуры, ограниченной графиком изменения параметров газа, построенного в координатах p-V, и линией обозначающей давление, действующее на поршень со стороны внутреннего объема двигателя. Поэтому работа расширения газа эквивалентна площади фигуры «rzba» (рис.1-7); работа сжатия — площади «rca». Откуда работа цикла эквивалентна площади «czba». Следовательно, можно сделать вывод: работа цикла поршневого двигателя эквивалентна площади внутри графика, построенного в р—V координатах.