Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
El-z_Volkov.doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
3.9 Mб
Скачать

4.2 Кинетика зародышеобразования

Так как центрами кристаллизации служат различные дефекты поверхности, то скорость образования на них зародышей не одинакова, и в общем случае количество вскрытых зародышами центров кристаллизации является функцией времени, прошедшего от начала процесса. Принято различать два типа зародышеобразования на центрах роста – мгновенную и прогрессирующую нуклеации.

Мгновенная нуклеация соответствует ситуации, когда зародышеобразование протекает с очень высокими скоростями и за очень маленький промежуток времени на подложке образуется N0 устойчивых зародышей одинакового размера и далее их количество не изменяется в течение всего времени кристаллизации осадка.

Кинетические уравнения для количества центров кристаллизации при мгновенной нуклеации описываются  - функцией:

при t <θ N=0

и при t>θ N = N0 (4.7)

где θ – индукционный период.

Скорость образования зародышей определяется выражением:

(4.8),

в котором А –удельная константа скорости зародышеобразования (в расчете на 1 зародыш).

Прогрессирующая нуклеации наблюдается в случаях, когда скорость зарождения изменяется во времени. Например, при не одинаковой активности центров роста, скорость образования зародышей будет максимальной в момент начала образования зародышей и далее будет уменьшаться по экспоненте

(4.9),

где N - предельное количество зародышей, равное всему количеству центров кристаллизации на подложке.

Количество зародышей будет увеличиваться со временем, после начала зародышеобразования:

(4.10)

Выражение (4.9) является общим законом зародышеобразования. Очевидно, что мгновенная нуклеация наблюдается при Аt>>1 и .

Если выполняется условие k1t << 1, то соблюдается линейный закон нуклеации: (4.11)

4.3 Скорость роста зародышей.

Процесс образования зародышей завершается созданием устойчивых у микрокристаллических частиц, которые далее развиваются путем присоединения атомов металла, получающихся по реакции (4.1). Этот этап, называемый ростом зародышей, идет со скоростью, определяемой закономерностями роста кристаллов.

Согласно теории роста кристаллов Косселя - Странского не любое место на растущем кристалле одинаково выгодно для присоединения к нему атомов. Так присоединение в точке «б», из которой возможен рост в трех направлениях (3D рост) требует больше энергии, а рост идет с меньшими скоростями, чем в точке «г», из которой возможен рост в одном направлении (1D рост) или в положение «в» откуда возможен рост в двух направлениях (2 D рост) с разными скоростями (рис.4.2). Поэтому кристалл растет в разных направлениях с разными скоростями, но так, чтобы форма кристалла обеспечивала минимум его свободной энергии в любой момент роста (см. условие (2)).

Рис 4.2. Схема роста кристалла по Косселю – Странскому.

Скорость роста точки растущей на поверхности любой формы равна производной по времени ее перемещения в нормальном направлении, то есть величине пропорциональной плотности тока (скорости реакции (4.1) в этой точке:

(4.12),

где Vm – мольный объем металла.

В теории электрокристаллизации рассматриваются два режима контроля скорости реакции (4.1) - кинетический и диффузионный. Кинетический режим подразумевает контроль скорости реакции стадией переноса заряда. Зависимость скорости роста от перенапряжения описывается уравнением

(4.13)

Входящее в это выражение перенапряжение * =-ф, ф - перенапряжением образования фазы металла в растущей точке поверхности. Фазовое перенапряжение вычисляется по формуле аналогичной формуле Томпсона для радиуса шарообразного зародыша:

(4.14)

r - радиус кривизны поверхности в точке роста.

При потенциостатическом росте (= const) точки поверхности растут c скоростями соответствующими радиусу кривизны в этой точке, а при одинаковой кривизне скорость роста точек поверхности зависит от направления роста. Так, например рост в направлении в-г (рис.4.2) происходит с наибольшей скоростью. Поэтому поверхность расширяется преимущественно в этом направлении.

При диффузионном режиме скорость реакции контролирует стадия объемной диффузии ионов к точкам растущей поверхности. Зависимость плотности тока от перенапряжения в этом случае описывается уравнением для нестационарной концентрационной поляризации:

(4.15)

где С0 - концентрация ионов металла, D – коэффициент диффузии ионов. Так как в начале роста (t  0) плотность тока диффузии велика, то режим диффузионного контроля начинается по прошествии некоторого периода времен от начала роста - tm До этого времени зародыш растет в кинетическом режиме с увеличением тока до максимальной величины Im при t = tm, после чего скорость роста начнут контролировать совместно обе стадии, а затем - только диффузия, при этом скорость роста будет уменьшаться.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]