Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
обмен углеводов.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
1.59 Mб
Скачать

3. Лабораторно-практические работы:

3.1. Качественные реакции:

- на глюкозу – реакция Троммера, реакция Фелинга, реакция Ниландера;

- на фруктозу – реакция Селиванова.

РЕАКЦИЯ ТРОММЕРА:

К 10 каплям 1% раствора глюкозы прибавить 5 капель 10% раствора NaOH и 2 капли 1% CuSO4 нагревают до

кипения. Образуется осадок желтого цвета СuOH или кирпично-красного цвета Cu2O.

РЕАКЦИЯ ФЕЛИНГА:

К 10 каплям 1% раствора глюкозы прибавить 5 капель реактива Фелинга-1 и 5 капель реактива Фелинга-2,

нагреть до кипения. Образуется осадок кирпично-красного цвета- Cu2O .

РЕАКЦИЯ НИЛАНДЕРА:

В пробирку наливают 10 капель 1% раствора глюкозы. Прибавляют 5 капель реактива Ниландера, кипятят 1-2

минуты. Образуется осадок черного цвета (восстановление висмута).

РЕАКЦИЯ СЕЛИВАНОВА:

В пробирку наливают 10 капель реактива Селиванова, добавляют 1-2 капли раствора фруктозы и нагревают до

кипения. Наблюдается красное окрашивание.

3.2. Обнаружение глюкозы и фруктозы в объектах растительного происхождения.

Углеводы моркови. В пробирку помещают 1 г. мелко нарезанной моркови, добавляют 2 мл воды и

встряхивают 2 мин. Надосадочную жидкость разливают поровну в 2 пробирки.

В одной пробирке открывают глюкозу реакцией Фелинга, в другой – фруктозу – с помощью реакции

Селиванова.

Реакция Фелинга – в 1-ю пробирку прибавляют 3 капли реактива Фелинга-1 и 3 капли реактива Фелинга-2.

Жидкость нагревают до кипения. Выпадает осадок кирпично-оранжевого цвета закиси меди.

Реакция Селиванова – во 2-ю пробирку добавляют 20 капель реактива Селиванова. Жидкость нагревают до

кипения, развивается красное окрашивание.

Углеводы меда. В 2 пробирки отмеривают по 6 капель раствора меда. В одну пробирку прибавляют 3 капли

реактива Фелинга-1 и 3 капли реактива Фелинга-2. Пробирку нагревают до кипения. Во 2-ю пробирку

прибавляют 20 капель реактива Селиванова и нагревают до кипения.

Открытие крахмала в картофеле. На срез картофеля наносят 2-3 капли раствора J2. Наблюдают появление

синего окрашивания.

Практическое занятие №2. Задание к занятию №2.

Тема: Обмен и функции углеводов.

Учебные и воспитательные цели:

  1. Общая цель занятия:

- привить и научить использовать знания об обмене гликогена, регуляции постоянства концентрации глюкозы в

крови в практике врача.

2. Частные цели:

- уметь выделять гликоген из мышечной ткани и изучать его свойства.

1. Входной контроль знаний:

1.1. Тесты.

1.2. Устный опрос.

1.3. Реферативные сообщения.

2. Основные вопросы темы:

2.1. Общая схема источников и путей использования глюкозы в организме.

2.2. Гликоген – свойства, биосинтез и мобилизация гликогена.

2.3. Гликогенозы и агликогенозы.

2.4. Содержание глюкозы в крови. Гипо-, гипергликемия, глюкозурия и причины их возникновения.

2.5. Регуляция уровня глюкозы в крови. Роль ЦНС, механизм действия инсулина, адреналина, глюкагона,

СТГ, глюкокортикоидов, тироксина и их влияние на состояние углеводного обмена.

3. Лабораторно-практические работы:

3.1 . Извлечение гликогена из мышечной ткани и изучение его свойств.

4. Выходной контроль

4.1. Ситуационные задачи.

5. Литература:

5.1. Материал лекций.

5.2. Николаев А.Я. Биологическая химия. М.: «Высшая школа», 1989г., с.232-237, 246-254.

5.3. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. М.: «Медицина», 1990г., с. 226-244, 521-525.

5.4. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. М.: «Медицина», 2004г., с. 169-187, 319-327,

357-359, 361-362

  1. Основные вопросы темы

    1. Общая схема источников и путей использования глюкозы в организме.

2.2. Гликоген – свойства, биосинтез и мобилизация гликогена.

Гликоген – животный крахмал, главный резервный гомополисахарид. Значительная часть глюкозы, поступающей в кровь, превращается в гликоген – запасный полисахарид, используемый в интервалах между приемами пищи в качестве источника глюкозы. Наибольшая концентрация гликогена обнаруживается в печени 2 – 6%, а в мышцах содержится 0,5 – 2%. В клетке гликоген находится не в растворенном состоянии, а в виде гранул. Гликоген имеет высокую молекулярную массу (1∙106 - 2∙108) и содержит до 1 млн. остатков глюкозы, соединенных 1,4 и 1,6 - гликозидными связями. Гликоген с йодом дает красно – бурое окрашивание.

Синтез гликогена.

Происходит тогда, когда после использования глюкозы остается её часть и она запасается в организме в виде

гликогена.

Фермент гликогенсинтаза участвует в образовании α-1,4-гликозидных связей, ветвящий фермент в образовании α-1,6-гликозидных связей. Образовавшиеся молекулы гликогена обладают низкой растворимостью и, следовательно, низким влиянием на осмотическое давление в клетке по сравнению с глюкозой, это объясняет то, что в клетке депонируется гликоген, а не глюкоза.

Распад гликогена.

Распад гликогена с образованием глюкозы происходит в период между приемами пищи, физической работе, при стрессе.

Пути мобилизации гликогена:

  1. фосфоролитический.

  2. амилолитический путь распада гликогена происходит при участии фермента амилазы.

Фосфоролитический путь – основной путь распада гликогена с образованием глюкозы:

В мышечной ткани нет фермента глюкозо-6-фосфатазы, поэтому гликоген мышц не распадается с

образованием глюкозы, а окисляется или аэробным или анаэробным путем с освобождением энергии. Через

10-18 часов после приема пищи запасы гликогена в печени значительно истощаются.

2.3. Гликогенозы и агликогенозы.

Гликогенозы (болезни накопления гликогена) обусловлены дефектом ферментов, участвующих в распаде гликогена. Например, болезнь Гирке связана с отсутствием фермента глюкозо-6-фосфатазы, при этом наблюдается избыточное накопление гликогена в печени, гипогликемия и ее последствия. Болезнь Мак-Ардла: причина - отсутствие фосфорилазы в мышечной ткани. При этом уровень глюкозы в крови в норме, но наблюдается слабость мышечной ткани и снижена способность выполнять физическую работу. Болезнь Андерсена связана с дефектом, ветвящего фермента, что приводит к накоплению гликогена в печени с очень длинными наружными и редкими точками ветвления, вследствие этого – желтуха, цирроз печени, печеночная недостаточность, летальный исход (неразветвленный гликоген разрушает гепатоциты).

Агликогенозы заболевания, возникающие в результате дефекта гликогенсинтазы. В печени и других тканях больных наблюдают очень низкое содержание гликогена. Это проявляется резко выраженной гипокликемией в постабсорбтивном периоде. Характерный симптом – судороги по утрам.

2.4. Содержание глюкозы в крови. Гипо-, гипергликемия, глюкозурия и причины их возникновения.

Концентрация глюкозы в крови поддерживается в течение суток на постоянном уровне 3,3-5,5 ммоль/л. После приема пищи уровень глюкозы возрастает в течение часа до 8 ммоль/л, а затем возвращается к норме. В организме постоянный уровень глюкозы в крови поддерживается благодаря существованию нейрогуморальных механизмов. Основным показателем состояния углеводного обмена служит содержание глюкозы в крови и моче.

ГИПЕРГЛИКЕМИЯ- состояние, при котором уровень глюкозы выше нормы. Причины:

  1. Физиологические - алиментарная, эмоциональная.

  2. Патологические – сахарный диабет; стероидный диабет (Иценко-Кушинга) – гиперпродукция глюкокортикоидов коры надпочечников; гиперпродукция адреналина, глюкагона, СТГ тироксина.

ГИПОГЛИКЕМИЯ - состояние, при котором уровень глюкозы ниже нормы. Причины:

  1. Сниженный выход глюкозы: заболевания печени, эндокринные заболевания (дефицит гормона роста, кортизола), наследственные метаболические нарушения (дефицит гликогенсинтетазы, галактоземия, непереносимость фруктозы, печеночные формы гликогенозов).

  2. Увеличенная утилизации глюкозы: снижение запасов жиров (нарушение питания), нарушение окисления жирных кислот, гиперплазия β-кл. подж. железы, передозировка инсулина, болезнь Аддисона – гипопродукция глюкокортикоидов.

ГЛЮКОЗУРИЯ – появление сахара в моче. Если уровень глюкозы в крови составляет 8-10 ммоль/л, то нарушается

почечный порог для глюкозы и она появляется в моче. Причины:

1. физиологические:

- алиментарная глюкозурия

- глюкозурия беременных

- нейрогенная на почве стрессовых состояний

2. патологические:

- сахарный диабет

- острый панкреатит

- острые инфекционные заболевания

2.5. Регуляция уровня глюкозы в крови. Роль ЦНС, механизм действия инсулина, адреналина, глюкагона,

СТГ, глюкокортикоидов, тироксина и их влияние на состояние углеводного обмена.

Ведущее значение в регуляции углеводного обмена принадлежит центральной нервной системе. Снижение уровня глюкозы в крови приводит к повышенной секреции адреналина, глюкагона, которые, поступая в орган-мишень для этих гормонов (печень), узнаются рецепторами мембран клеток печени и активируют фермент мембраны аденилатциклазу, запуская механизм, приводящий к распаду гликогена с образованием глюкозы.

Схема механизма взаимодействия адреналина и глюкагона с клеткой:

Адреналин – повышает уровень глюкозы за счет активации фермента фосфорилазы (аденилатциклазная система), которая приводит к распаду гликогена с образованием глюкозы, блокирует фермент гликогенсинтазу, т.е. синтез гликогена.

Глюкагон – действует подобно адреналину, но плюс к этому активирует ферменты глюконеогенеза.

Глюкокортикоиды – повышают уровень глюкозы крови, являясь индукторами синтеза ферментов глюконеогенеза.

СТГ актвирует глюконеогенез, тироксин активирует инсулиназу, расщепляющую инсулин, влияет на всасывание глюкозы в кишечнике.

Инсулин – единственный гормон, понижающий уровень глюкозы в крови, за счет:

  1. повышает проницаемость клеточных мембран для глюкозы в клетках жировой и мышечной ткани, под его влиянием белки-транспортеры ГЛЮТ-4 перемешаются из цитоплазмы в мембрану клетки, где соединяются с глюкозой и транспортируют её во внутрь клетки.

  2. активирует гексокиназу, фруктокиназу, пируваткиназу (стимулирует гликолиз).

  3. активирует гликогенсинтетазу (стимулирует синтез гликогена).

  4. активирует дегидрогеназу пентозо-фосфатного пути.

  5. по механизму хронической регуляции является индуктором синтеза гексокиназы и репрессором синтеза ферментов глюконеогенеза (блокирует глюконеогенез).

  6. 30% углеводов превращает в липиды.

  7. стимулирует ЦТК, активируя фермент синтетазу, которая катализирует реакцию взаимодействия ацетил-КоА с ЩУК