
- •Министерство образования и науки рф
- •080801 Прикладная информатика (по областям применения)
- •Сочи, 2010 г.
- •1. Меры информации 20
- •2. Квантование сигналов 46
- •3.8. Помехоустойчивое кодирование 96
- •Введение Курс лекций
- •Определение понятия информация
- •Фазы обращения информации
- •Некоторые определения
- •1. Меры информации
- •1.1. Структурные меры количества информации
- •1.1.1. Геометрическая мера
- •1.1.2. Комбинаторная мера
- •1.1.3. Аддитивная мера (мера Хартли)
- •1.2. Статистические меры
- •1.2.1. Энтропия и ее свойства.
- •1.2.1.1. Энтропия и средняя энтропия простого события
- •Метод множителей Лагранжа
- •1.2.1.2. Энтропия сложного события, состоящего из нескольких независимых событий
- •1.2.1.3. Вывод формулы среднего значения энтропии на букву сообщения
- •1.2.1.4. Энтропия сложного события, состоящего из нескольких зависимых событий
- •1.2.2. Некоторые выводы, касающиеся статистической меры количества информации Шеннона
- •1.2.3. Литература
- •1.2.4. Избыточность сообщения
- •1.2.5. Пример оценки количества информации при помощи статистической меры Шеннона
- •1.3. Семантические меры информации
- •1.3.1. Содержательность информации
- •1.3.2. Целесообразность информации
- •1.3.3. Динамическая энтропия
- •1.4. Общие замечания об измерении информации
- •1.5. Энтропия непрерывных сообщений
- •1.5.1. Экстремальные свойства энтропии непрерывных сообщений
- •1.5.1.1. Первый случай (значения сл. Величины ограничены интервалом)
- •1.5.1.2. Второй случай (заданы дисперсия и математическое ожидание сл. Величины)
- •1.5.1.3. Третий случай (сл. Величина принимает только положительные значения)
- •2. Квантование сигналов
- •2.1. Виды дискретизации (квантования)
- •2.2. Критерии точности представления квантованного сигнала
- •2.3. Элементы обобщенной спектральной теории сигналов
- •2.4. Дискретизация по времени
- •2.4.1. Разложение в ряд Котельникова (Теорема Котельникова)
- •2.4.1.1. Свойства функции отсчетов
- •2.4.1.2. О практическом использовании теоремы Котельникова
- •2.4.2. Выбор периода дискретизации (квантования по времени) по критерию наибольшего отклонения
- •2.4.2.1. Интерполяция при помощи полиномов Лагранжа
- •2.4.2.2. Оценка максимального значения ошибки при получении воспроизводящей функции на основе полинома Лагранжа
- •2.4.2.3. Схема дискретизации-передачи-восстановления сигнала
- •2.4.2.4. Расчет периода дискретизации при использовании для получения воспроизводящей функции полинома Лагранжа нулевого порядка
- •2.4.2.5. Расчет периода дискретизации при использовании для получения воспроизводящей функции полинома Лагранжа первого порядка
- •2.4.2.6. Расчет периода дискретизации при использовании для получения воспроизводящей функции полинома Лагранжа второго порядка
- •2.4.2.7. Обобщение на случай использования полиномов Лагранжа произвольного порядка
- •2.4.3. Выбор интервала дискретизации по критерию среднеквадратического отклонения
- •2.5. Квантование по уровню
- •2.5.1. Оптимальное квантование по уровню
- •2.5.2. Дисперсия ошибки в случае использования равномерной шкалы квантования по уровню
- •2.5.3. Расчет неравномерной оптимальной в смысле минимума дисперсии ошибки шкалы квантования.
- •2.5.4. Расчет неравномерной оптимальной в смысле максимума количества информации в квантованном сигнале шкалы квантования
- •2.5.5. Закон компандирования при условии равномерного закона распределения квантуемого сигнала
- •3. Кодирование информации
- •3.1. Общие понятия и определения. Цели кодирования
- •3.2. Элементы теории кодирования
- •3.3. Неравенство Крафта
- •3.4. Теорема об обобщении некоторых результатов, полученных для префиксных кодов, на все однозначно декодируемые коды
- •3.5. Основная теорема кодирования для канала связи без шума (теорема 3)
- •3.6. Теорема о минимальной средней длине кодового слова при поблочном кодировании (теорема 4)
- •3.7. Оптимальные неравномерные коды
- •3.7.1. Лемма 1. О существовании оптимального кода с одинаковой длиной кодовых слов двух наименее вероятных кодируемых букв
- •3.7.2. Лемма 2. Об оптимальности префиксного кода нередуцированного ансамбля, если префиксный код редуцированного ансамбля оптимален
- •3.7.3. Коды Хаффмена12
- •3.7.4. Коды Шеннона−Фэно
- •3.7.5. Параметры эффективности оптимальных кодов
- •3.7.6. Особенности эффективных кодов.
- •3.8. Помехоустойчивое кодирование
- •3.8.1. Классификация кодов
- •3.8.2. Простейшие модели цифровых каналов связи с помехами
- •3.8.3. Расчет вероятности искажения кодового слова в дсмк
- •3.8.4. Общие принципы использования избыточности
- •3.8.5. Граница Хэмминга
- •3.8.6. Избыточность помехоустойчивых кодов
- •3.8.7. Математическое введение к алгебраическим кодам
- •3.8.8. Линейные коды
- •3.8.9. Упрощённый способ построения линейного кода
- •Определение числа добавочных разрядов m.
- •Построение образующей матрицы
- •Порядок кодирования
- •4. Порядок декодирования
- •3.8.10. Двоичные циклические коды
- •3.8.11. Некоторые свойства циклических кодов
- •3.8.12. Построение кода с заданной корректирующей способностью
- •3.8.13. Матричное описание циклических кодов
- •3.8.14. Выбор образующего полинома
- •4. Передача информации
- •4.1. Виды каналов передачи информации
- •4.2. Разделение каналов связи
- •4.2.1. Частотное разделение
- •4.2.2. Временное разделение
- •4.2.3. Кодовое разделение
- •4.2.4. Разделение по уровню
- •4.2.5. Корреляционное разделение
- •4.2.6. Комбинированные методы разделения
- •4.3. Пропускная способность каналов связи
- •4.4. Пропускная способность дискретного канала связи с шумом
- •4.4.1. Типичные последовательности и их свойства
- •4.4.2. Основная теорема Шеннона для дискретного канала с шумом
- •4.4.3. Обсуждение основной теоремы Шеннона для канала с шумом
- •4.5. Пропускная способность непрерывного канала при наличии аддитивного шума
- •Литература
- •Приложение 1. Таблица неприводимых полиномов
- •Учебно-лабораторный практикум л абораторная работа 1: Исследование информативности источников дискретных сообщений.
- •Теоретическое введение
- •Шаг 2. Ввод текстовых файлов в Excel-таблицу с разбиением каждой строки текста на отдельные символы.
- •Шаг 3. Используя инструмент «гистограмма» пакета анализа надстройки Анализ данных, находим частоты появления каждого символа в текстах и по ним находим вероятности их появления в данном языке.
- •Шаг 4. Находим среднюю энтропию, приходящуюся на 1 букву сообщения.
- •Шаг 6. Возьмем короткий отрезок текста на одном из заданных языков и найдем количество заключенной в нем информации
- •Шаг 7. Проделаем те же операции с учетом зависимости двух соседних букв того же текста.
- •Шаг 8. Напишем отчет о выполненной работе с описанием всех вычислений и о том, как они выполнялись. Прокомментируйте результаты.
- •Шаг 9. Сдайте или отослать по электронной почте (alexm5@fromru.Com) отчет на проверку преподавателю. Шаг 10. Защитите лабораторную работу у преподавателя. Варианты задания
- •Результаты работы
- •Сдача работы
- •Вопросы для самопроверки
- •Литература
- •Приложение 1: Пример оформления титульного листа
- •Приложение 2: Порядок создания нестандартных функций при использовании табличного процессора Excel Введение
- •Подключение возможности использования нестандартных функций.
- •Создание нестандартной функции
- •Приложение 3: Описание функции впр
- •Лабораторная работа 2. Исследование методов дискретизации непрерывных сообщений по времени
- •Теоретическое введение.
- •Последовательность выполнения практической части работы
- •1. Знакомство с программой Wavosaur для записи и обработки звука.
- •2. Подключите к компьютеру головную гарнитуру (головной телефон и микрофон, рис. 2, слева) и нажмите кнопку Monitor input with vu meter, указанную на рис. 2 справа синей стрелкой.
- •3. Запись голоса и подготовка сигнала.
- •4. Импорт текстовых данных в Excel
- •Результаты работы
- •Литература
- •Вопросы для самопроверки
- •Иллюстрация к порядку вычисления ряда Найквиста-Котельникова
- •Лабораторная работа 3. Исследование оптимального квантования непрерывных сообщений по уровню.
- •Теоретическое введение.
- •Возможный вариант выполнения работы
- •Результаты работы
- •Литература
- •Вопросы для самопроверки
- •Лабораторная работа 4. Исследование оптимальных (в смысле минимальной средней длины кодового слова) кодов на примере кодов Шеннона-Фэно и Хаффмена.
- •Теоретическое введение.
- •Коды Хаффмена
- •Коды Шеннона−Фэно
- •Параметры эффективности оптимальных кодов
- •Особенности эффективных кодов.
- •Выполнение работы
- •Результаты работы
- •Литература
- •Вопросы для самопроверки
- •Лабораторная работа 5. Исследование кодов, обнаруживающих и исправляющих ошибки на примере линейного кода, исправляющего однократные ошибки.
- •Теоретическое введение.
- •Определение числа добавочных разрядов m.
- •Построение образующей матрицы
- •Порядок кодирования
- •4. Порядок декодирования
- •Выполнение работы
- •Результаты работы
- •Литература
- •Вопросы для самопроверки
- •12 Дэвид Хаффман (р. 9 августа 1925, Альянс, Огайо — 7 октября 1999, Санта Круз, Калифорния) — первопроходец в сфере информатики.
3.8. Помехоустойчивое кодирование
Как следует из названия, такое кодирование предназначено для устранения вредного влияния помех в каналах передачи информации. Уже сообщалось, что такая передача возможна как в пространстве, так и во времени, например, при хранении информации в виде документов в архивах или в запоминающих устройствах компьютеров.
Теория помехоустойчивого кодирования базируется на результатах исследований, проведенных К. Шенноном и сформулированных им в виде основной теоремы кодирования для дискретного канала с шумом: «При любой скорости передачи символов вторичного алфавита меньшей, чем пропускная способность канала, существует такой код, при котором вероятность ошибочного декодирования будет сколь угодно мала; вероятность ошибки не может быть сделана сколь угодно малой, если скорость передачи больше пропускной способности канала».
Здесь под скоростью передачи информации понимается количество информации, передаваемой через канал связи за единицу времени, а под пропускной способностью – максимальная скорость передачи информации через канал связи (не надо путать со скоростью передачи символов вторичного алфавита).
Подробнее эти вопросы будут рассмотрены ниже в разделе Передача информации.
Сейчас же при обсуждении методов помехоустойчивого кодирования важен следующий вывод из основной теоремы Шеннона: хотя теорема не указывает способ построения помехоустойчивых кодов, она утверждает, что коды, способные полностью нейтрализовать вредное влияние помех при соответствующей скорости передачи информации, существуют. Это мобилизовало усилия ученых на их разработку.
При рассмотрении процесса помехоустойчивого кодирования обычно исходят из того, что первичный и вторичный алфавиты совпадают. Предполагают, что они двоичные. Кроме того, предполагается равновероятность и статистическая независимость букв первичного алфавита. Это действительно так, если предварительно выполнить кодирование сообщения с помощью эффективного (оптимального) кода. Таким образом, предполагается, что энтропия букв первичного алфавита максимальна, а избыточность источника равна нулю.
В настоящее время существует большое количество разнообразных кодов. Выполнена их подробная классификация. Рассмотрим наиболее важные из классов кодов.
3.8.1. Классификация кодов
В зависимости от способности обнаруживать и исправлять ошибки, различают коды, обнаруживающие ошибки, и коды, исправляющие ошибки. Первые позволяют только обнаруживать, но не исправлять ошибки. Вторые – не только обнаруживать, но и исправлять большую или меньшую долю обнаруженных ошибок.
По форме внесения избыточности различают разделимые и неразделимые коды.
В разделимых кодах кодовые слова четко разделены на две части. Одна часть состоит из исходных (кодируемых) разрядов, а другая из дополнительных разрядов, благодаря которым собственно и обеспечивается возможность обнаружения и/или исправления ошибок.
Ясно, что эти дополнительные разряды создают в сообщении избыточность (вспомним, что предполагается нулевая избыточность исходного (кодируемого) сообщения).
В кодовых словах неразделимого кода такое разделение отсутствует.
В зависимости от способа образования дополнительных разрядов разделимые коды подразделяются на систематические и несистематические. В систематических кодах дополнительные разряды символы образуются с помощью различных линейных операций над информационными. Систематические коды - самая обширная и наиболее применяемая группа корректирующих кодов.
По способу кодирования различают блочные и непрерывные коды.
При блочном кодировании входное кодируемое сообщение разбивается на блоки фиксированной длины k. Этим блокам ставятся в соответствие кодовые слова длиной n (n>k).
При непрерывном кодировании каждый
символ b выходной
последовательности (закодированного
сообщения) определяется рекуррентным
соотношением, связывающим его с
соответствующими символами a
входной последовательности (кодируемого
сообщения), например:
,
где: a – символы входной последовательности (кодируемого сообщения);
b – символы выходной последовательности (закодированного сообщения);
ckj и s – константы, зависящие от кода;
i – номер символа входной последовательности (кодируемого сообщения);
j – номер символа в группе символов выходной последовательности (закодированного сообщения), создаваемой в результате поступления нового символа входной последовательности.
L – количество символов выходной последовательности, создаваемых в результате кодирования в ответ на поступления на вход кодера одного символа входной последовательности.
Следующим рисунком иллюстрируется кодирование непрерывным кодом:
Рис. 3.4. Образование непрерывного кода.
Таким образом, на каждый символ входной последовательности приходится L символов выходной.
Существуют и другие варианты формулы кодирования.
По способу описания выделяют алгебраические коды, т.е. коды, описываемые с помощью аппарата высшей алгебры.
В зависимости от длины кодового слова различают равномерные и неравномерные коды. Если длина кодовых слов постоянна, код равномерный. В противном случае – неравномерный.
Рассмотрим блочный равномерный код. Если произвольная линейная комбинация кодовых слов – также кодовое слово, такой код называется линейным.
Одни и тот же код может одновременно принадлежать нескольким классам, например, может существовать алгебраический разделимый неравномерный код.