
- •Министерство образования и науки рф
- •080801 Прикладная информатика (по областям применения)
- •Сочи, 2010 г.
- •1. Меры информации 20
- •2. Квантование сигналов 46
- •3.8. Помехоустойчивое кодирование 96
- •Введение Курс лекций
- •Определение понятия информация
- •Фазы обращения информации
- •Некоторые определения
- •1. Меры информации
- •1.1. Структурные меры количества информации
- •1.1.1. Геометрическая мера
- •1.1.2. Комбинаторная мера
- •1.1.3. Аддитивная мера (мера Хартли)
- •1.2. Статистические меры
- •1.2.1. Энтропия и ее свойства.
- •1.2.1.1. Энтропия и средняя энтропия простого события
- •Метод множителей Лагранжа
- •1.2.1.2. Энтропия сложного события, состоящего из нескольких независимых событий
- •1.2.1.3. Вывод формулы среднего значения энтропии на букву сообщения
- •1.2.1.4. Энтропия сложного события, состоящего из нескольких зависимых событий
- •1.2.2. Некоторые выводы, касающиеся статистической меры количества информации Шеннона
- •1.2.3. Литература
- •1.2.4. Избыточность сообщения
- •1.2.5. Пример оценки количества информации при помощи статистической меры Шеннона
- •1.3. Семантические меры информации
- •1.3.1. Содержательность информации
- •1.3.2. Целесообразность информации
- •1.3.3. Динамическая энтропия
- •1.4. Общие замечания об измерении информации
- •1.5. Энтропия непрерывных сообщений
- •1.5.1. Экстремальные свойства энтропии непрерывных сообщений
- •1.5.1.1. Первый случай (значения сл. Величины ограничены интервалом)
- •1.5.1.2. Второй случай (заданы дисперсия и математическое ожидание сл. Величины)
- •1.5.1.3. Третий случай (сл. Величина принимает только положительные значения)
- •2. Квантование сигналов
- •2.1. Виды дискретизации (квантования)
- •2.2. Критерии точности представления квантованного сигнала
- •2.3. Элементы обобщенной спектральной теории сигналов
- •2.4. Дискретизация по времени
- •2.4.1. Разложение в ряд Котельникова (Теорема Котельникова)
- •2.4.1.1. Свойства функции отсчетов
- •2.4.1.2. О практическом использовании теоремы Котельникова
- •2.4.2. Выбор периода дискретизации (квантования по времени) по критерию наибольшего отклонения
- •2.4.2.1. Интерполяция при помощи полиномов Лагранжа
- •2.4.2.2. Оценка максимального значения ошибки при получении воспроизводящей функции на основе полинома Лагранжа
- •2.4.2.3. Схема дискретизации-передачи-восстановления сигнала
- •2.4.2.4. Расчет периода дискретизации при использовании для получения воспроизводящей функции полинома Лагранжа нулевого порядка
- •2.4.2.5. Расчет периода дискретизации при использовании для получения воспроизводящей функции полинома Лагранжа первого порядка
- •2.4.2.6. Расчет периода дискретизации при использовании для получения воспроизводящей функции полинома Лагранжа второго порядка
- •2.4.2.7. Обобщение на случай использования полиномов Лагранжа произвольного порядка
- •2.4.3. Выбор интервала дискретизации по критерию среднеквадратического отклонения
- •2.5. Квантование по уровню
- •2.5.1. Оптимальное квантование по уровню
- •2.5.2. Дисперсия ошибки в случае использования равномерной шкалы квантования по уровню
- •2.5.3. Расчет неравномерной оптимальной в смысле минимума дисперсии ошибки шкалы квантования.
- •2.5.4. Расчет неравномерной оптимальной в смысле максимума количества информации в квантованном сигнале шкалы квантования
- •2.5.5. Закон компандирования при условии равномерного закона распределения квантуемого сигнала
- •3. Кодирование информации
- •3.1. Общие понятия и определения. Цели кодирования
- •3.2. Элементы теории кодирования
- •3.3. Неравенство Крафта
- •3.4. Теорема об обобщении некоторых результатов, полученных для префиксных кодов, на все однозначно декодируемые коды
- •3.5. Основная теорема кодирования для канала связи без шума (теорема 3)
- •3.6. Теорема о минимальной средней длине кодового слова при поблочном кодировании (теорема 4)
- •3.7. Оптимальные неравномерные коды
- •3.7.1. Лемма 1. О существовании оптимального кода с одинаковой длиной кодовых слов двух наименее вероятных кодируемых букв
- •3.7.2. Лемма 2. Об оптимальности префиксного кода нередуцированного ансамбля, если префиксный код редуцированного ансамбля оптимален
- •3.7.3. Коды Хаффмена12
- •3.7.4. Коды Шеннона−Фэно
- •3.7.5. Параметры эффективности оптимальных кодов
- •3.7.6. Особенности эффективных кодов.
- •3.8. Помехоустойчивое кодирование
- •3.8.1. Классификация кодов
- •3.8.2. Простейшие модели цифровых каналов связи с помехами
- •3.8.3. Расчет вероятности искажения кодового слова в дсмк
- •3.8.4. Общие принципы использования избыточности
- •3.8.5. Граница Хэмминга
- •3.8.6. Избыточность помехоустойчивых кодов
- •3.8.7. Математическое введение к алгебраическим кодам
- •3.8.8. Линейные коды
- •3.8.9. Упрощённый способ построения линейного кода
- •Определение числа добавочных разрядов m.
- •Построение образующей матрицы
- •Порядок кодирования
- •4. Порядок декодирования
- •3.8.10. Двоичные циклические коды
- •3.8.11. Некоторые свойства циклических кодов
- •3.8.12. Построение кода с заданной корректирующей способностью
- •3.8.13. Матричное описание циклических кодов
- •3.8.14. Выбор образующего полинома
- •4. Передача информации
- •4.1. Виды каналов передачи информации
- •4.2. Разделение каналов связи
- •4.2.1. Частотное разделение
- •4.2.2. Временное разделение
- •4.2.3. Кодовое разделение
- •4.2.4. Разделение по уровню
- •4.2.5. Корреляционное разделение
- •4.2.6. Комбинированные методы разделения
- •4.3. Пропускная способность каналов связи
- •4.4. Пропускная способность дискретного канала связи с шумом
- •4.4.1. Типичные последовательности и их свойства
- •4.4.2. Основная теорема Шеннона для дискретного канала с шумом
- •4.4.3. Обсуждение основной теоремы Шеннона для канала с шумом
- •4.5. Пропускная способность непрерывного канала при наличии аддитивного шума
- •Литература
- •Приложение 1. Таблица неприводимых полиномов
- •Учебно-лабораторный практикум л абораторная работа 1: Исследование информативности источников дискретных сообщений.
- •Теоретическое введение
- •Шаг 2. Ввод текстовых файлов в Excel-таблицу с разбиением каждой строки текста на отдельные символы.
- •Шаг 3. Используя инструмент «гистограмма» пакета анализа надстройки Анализ данных, находим частоты появления каждого символа в текстах и по ним находим вероятности их появления в данном языке.
- •Шаг 4. Находим среднюю энтропию, приходящуюся на 1 букву сообщения.
- •Шаг 6. Возьмем короткий отрезок текста на одном из заданных языков и найдем количество заключенной в нем информации
- •Шаг 7. Проделаем те же операции с учетом зависимости двух соседних букв того же текста.
- •Шаг 8. Напишем отчет о выполненной работе с описанием всех вычислений и о том, как они выполнялись. Прокомментируйте результаты.
- •Шаг 9. Сдайте или отослать по электронной почте (alexm5@fromru.Com) отчет на проверку преподавателю. Шаг 10. Защитите лабораторную работу у преподавателя. Варианты задания
- •Результаты работы
- •Сдача работы
- •Вопросы для самопроверки
- •Литература
- •Приложение 1: Пример оформления титульного листа
- •Приложение 2: Порядок создания нестандартных функций при использовании табличного процессора Excel Введение
- •Подключение возможности использования нестандартных функций.
- •Создание нестандартной функции
- •Приложение 3: Описание функции впр
- •Лабораторная работа 2. Исследование методов дискретизации непрерывных сообщений по времени
- •Теоретическое введение.
- •Последовательность выполнения практической части работы
- •1. Знакомство с программой Wavosaur для записи и обработки звука.
- •2. Подключите к компьютеру головную гарнитуру (головной телефон и микрофон, рис. 2, слева) и нажмите кнопку Monitor input with vu meter, указанную на рис. 2 справа синей стрелкой.
- •3. Запись голоса и подготовка сигнала.
- •4. Импорт текстовых данных в Excel
- •Результаты работы
- •Литература
- •Вопросы для самопроверки
- •Иллюстрация к порядку вычисления ряда Найквиста-Котельникова
- •Лабораторная работа 3. Исследование оптимального квантования непрерывных сообщений по уровню.
- •Теоретическое введение.
- •Возможный вариант выполнения работы
- •Результаты работы
- •Литература
- •Вопросы для самопроверки
- •Лабораторная работа 4. Исследование оптимальных (в смысле минимальной средней длины кодового слова) кодов на примере кодов Шеннона-Фэно и Хаффмена.
- •Теоретическое введение.
- •Коды Хаффмена
- •Коды Шеннона−Фэно
- •Параметры эффективности оптимальных кодов
- •Особенности эффективных кодов.
- •Выполнение работы
- •Результаты работы
- •Литература
- •Вопросы для самопроверки
- •Лабораторная работа 5. Исследование кодов, обнаруживающих и исправляющих ошибки на примере линейного кода, исправляющего однократные ошибки.
- •Теоретическое введение.
- •Определение числа добавочных разрядов m.
- •Построение образующей матрицы
- •Порядок кодирования
- •4. Порядок декодирования
- •Выполнение работы
- •Результаты работы
- •Литература
- •Вопросы для самопроверки
- •12 Дэвид Хаффман (р. 9 августа 1925, Альянс, Огайо — 7 октября 1999, Санта Круз, Калифорния) — первопроходец в сфере информатики.
2.1. Виды дискретизации (квантования)
Наиболее простыми и часто используемыми видами квантования являются:
квантование по уровню (будем говорить просто квантование);
квантование по времени (будем называть дискретизацией);
их сочетание.
Ниже приведены варианты графического представления (рис. 2.1, 2.2, 2.3) этих видов квантования.
Рис. 2.1. Квантование по уровню (квантование).
Совокупность уровней и границ квантования называют шкалой квантования.
Рис. 2.2. Дискретизация по времени (дискретизация).
Рис. 2.3. Квантование и по уровню и по времени.
Формы квантования только по уровню или только по времени являются непрерывно-дискретными, т.к. в первом случае непрерывной величиной является время ti перехода с одного уровня на другой, а во втором – значение x(ti) квантуемой величины в дискретный момент времени ti.
При квантовании же по уровню и по времени одновременно и время и уровень принимают конечное количество значений, что с технической точки зрения выгоднее всего. Точность представления сигнала, однако, в этом случае наименьшая.
Кроме трех вышеупомянутых видов
квантования существует и все шире
используется четвертый вид – представление
сигнала путем разложения его в ряд по
некоторой системе функций:
,
где
− система функций, по которым выполняется
разложение сигнала, а
−
коэффициенты разложения. Ниже показывается,
что коэффициенты разложения Сk
являются непрерывными величинами.
Поэтому здесь мы по сути дела имеем дело
с непрерывно-дискретной формой
представления сигнала. Для перехода к
полностью дискретной форме эти
коэффициенты нужно проквантовать по
уровню.
Исследуем точность представления квантованного сигнала. Для этого прежде всего нужно определить критерии точности.
2.2. Критерии точности представления квантованного сигнала
В результате обратного преобразования
из непрерывно-дискретной формы в
непрерывную получается сигнал
,
отличающийся от исходного
на
величину ошибки
.
Сигнал
называется воспроизводящей функцией.
Способы дискретизации и воспроизведения влияют на ошибку и ее параметры. Обычно, чем шире шаг квантования по уровню или по времени или чем меньше количество n членов разложения сигнала в ряд, тем больше ошибка и одновременно меньше данных нужно передавать через канал связи или меньше объем памяти, требуемый для хранения этого сигнала. Поэтому, зная связь между параметрами дискретизации и восстановления, надо выбирать компромиссное решение, удовлетворяющее как по точности, так и по объемам данных.
Ошибка
является функцией времени и потому
неудобна для использования в качестве
критерия точности тракта
дискретизация-восстановление.
Поэтому в качестве такого критерия обычно используют какой-либо функционал ошибки.
1. Чаще всего в качестве такого функционала применяют среднеквадратическую погрешность, определяемую по формуле:
.
Здесь Т – некоторый временной интервал, на котором находится среднеквадратическая ошибка.
2. Иногда применяют другой критерий – наибольшее отклонение:
Однако его использование затруднено из-за необходимости априорного знания максимального значения сигнала и его производных.
3. Еще один критерий называется
интегральным. Он находится по
формуле:
.
Интегральный критерий характеризует в основном отклонение среднего значения воспроизведенного сигнала от исходного. Его имеет смысл использовать тогда, когда целью передачи сигнала является передача именно его среднего значения. Критерий характеризуется минимальными объемами требуемых априорных знаний о передаваемом сигнале.
Вероятностный критерий задается формулой:
, где
− ширина доверительного интервала, а
− доверительная вероятность.
Вероятностный критерий показывает с какой вероятностью отклонения воспроизведенного сигнала от исходного не выйдет за пределы доверительного интервала. Очевидно, что, чем ширина интервала меньше, а вероятность выше, тем точность воспроизведения сигнала будет больше. Однако отсутствие больших отклонений от исходного сигнала при этом не гарантируется.
Информационный критерий. При использовании этого критерия рассматривается количество информации, заключенной в воспроизведенном сигнале относительно исходного.