
- •Министерство образования и науки рф
- •080801 Прикладная информатика (по областям применения)
- •Сочи, 2010 г.
- •1. Меры информации 20
- •2. Квантование сигналов 46
- •3.8. Помехоустойчивое кодирование 96
- •Введение Курс лекций
- •Определение понятия информация
- •Фазы обращения информации
- •Некоторые определения
- •1. Меры информации
- •1.1. Структурные меры количества информации
- •1.1.1. Геометрическая мера
- •1.1.2. Комбинаторная мера
- •1.1.3. Аддитивная мера (мера Хартли)
- •1.2. Статистические меры
- •1.2.1. Энтропия и ее свойства.
- •1.2.1.1. Энтропия и средняя энтропия простого события
- •Метод множителей Лагранжа
- •1.2.1.2. Энтропия сложного события, состоящего из нескольких независимых событий
- •1.2.1.3. Вывод формулы среднего значения энтропии на букву сообщения
- •1.2.1.4. Энтропия сложного события, состоящего из нескольких зависимых событий
- •1.2.2. Некоторые выводы, касающиеся статистической меры количества информации Шеннона
- •1.2.3. Литература
- •1.2.4. Избыточность сообщения
- •1.2.5. Пример оценки количества информации при помощи статистической меры Шеннона
- •1.3. Семантические меры информации
- •1.3.1. Содержательность информации
- •1.3.2. Целесообразность информации
- •1.3.3. Динамическая энтропия
- •1.4. Общие замечания об измерении информации
- •1.5. Энтропия непрерывных сообщений
- •1.5.1. Экстремальные свойства энтропии непрерывных сообщений
- •1.5.1.1. Первый случай (значения сл. Величины ограничены интервалом)
- •1.5.1.2. Второй случай (заданы дисперсия и математическое ожидание сл. Величины)
- •1.5.1.3. Третий случай (сл. Величина принимает только положительные значения)
- •2. Квантование сигналов
- •2.1. Виды дискретизации (квантования)
- •2.2. Критерии точности представления квантованного сигнала
- •2.3. Элементы обобщенной спектральной теории сигналов
- •2.4. Дискретизация по времени
- •2.4.1. Разложение в ряд Котельникова (Теорема Котельникова)
- •2.4.1.1. Свойства функции отсчетов
- •2.4.1.2. О практическом использовании теоремы Котельникова
- •2.4.2. Выбор периода дискретизации (квантования по времени) по критерию наибольшего отклонения
- •2.4.2.1. Интерполяция при помощи полиномов Лагранжа
- •2.4.2.2. Оценка максимального значения ошибки при получении воспроизводящей функции на основе полинома Лагранжа
- •2.4.2.3. Схема дискретизации-передачи-восстановления сигнала
- •2.4.2.4. Расчет периода дискретизации при использовании для получения воспроизводящей функции полинома Лагранжа нулевого порядка
- •2.4.2.5. Расчет периода дискретизации при использовании для получения воспроизводящей функции полинома Лагранжа первого порядка
- •2.4.2.6. Расчет периода дискретизации при использовании для получения воспроизводящей функции полинома Лагранжа второго порядка
- •2.4.2.7. Обобщение на случай использования полиномов Лагранжа произвольного порядка
- •2.4.3. Выбор интервала дискретизации по критерию среднеквадратического отклонения
- •2.5. Квантование по уровню
- •2.5.1. Оптимальное квантование по уровню
- •2.5.2. Дисперсия ошибки в случае использования равномерной шкалы квантования по уровню
- •2.5.3. Расчет неравномерной оптимальной в смысле минимума дисперсии ошибки шкалы квантования.
- •2.5.4. Расчет неравномерной оптимальной в смысле максимума количества информации в квантованном сигнале шкалы квантования
- •2.5.5. Закон компандирования при условии равномерного закона распределения квантуемого сигнала
- •3. Кодирование информации
- •3.1. Общие понятия и определения. Цели кодирования
- •3.2. Элементы теории кодирования
- •3.3. Неравенство Крафта
- •3.4. Теорема об обобщении некоторых результатов, полученных для префиксных кодов, на все однозначно декодируемые коды
- •3.5. Основная теорема кодирования для канала связи без шума (теорема 3)
- •3.6. Теорема о минимальной средней длине кодового слова при поблочном кодировании (теорема 4)
- •3.7. Оптимальные неравномерные коды
- •3.7.1. Лемма 1. О существовании оптимального кода с одинаковой длиной кодовых слов двух наименее вероятных кодируемых букв
- •3.7.2. Лемма 2. Об оптимальности префиксного кода нередуцированного ансамбля, если префиксный код редуцированного ансамбля оптимален
- •3.7.3. Коды Хаффмена12
- •3.7.4. Коды Шеннона−Фэно
- •3.7.5. Параметры эффективности оптимальных кодов
- •3.7.6. Особенности эффективных кодов.
- •3.8. Помехоустойчивое кодирование
- •3.8.1. Классификация кодов
- •3.8.2. Простейшие модели цифровых каналов связи с помехами
- •3.8.3. Расчет вероятности искажения кодового слова в дсмк
- •3.8.4. Общие принципы использования избыточности
- •3.8.5. Граница Хэмминга
- •3.8.6. Избыточность помехоустойчивых кодов
- •3.8.7. Математическое введение к алгебраическим кодам
- •3.8.8. Линейные коды
- •3.8.9. Упрощённый способ построения линейного кода
- •Определение числа добавочных разрядов m.
- •Построение образующей матрицы
- •Порядок кодирования
- •4. Порядок декодирования
- •3.8.10. Двоичные циклические коды
- •3.8.11. Некоторые свойства циклических кодов
- •3.8.12. Построение кода с заданной корректирующей способностью
- •3.8.13. Матричное описание циклических кодов
- •3.8.14. Выбор образующего полинома
- •4. Передача информации
- •4.1. Виды каналов передачи информации
- •4.2. Разделение каналов связи
- •4.2.1. Частотное разделение
- •4.2.2. Временное разделение
- •4.2.3. Кодовое разделение
- •4.2.4. Разделение по уровню
- •4.2.5. Корреляционное разделение
- •4.2.6. Комбинированные методы разделения
- •4.3. Пропускная способность каналов связи
- •4.4. Пропускная способность дискретного канала связи с шумом
- •4.4.1. Типичные последовательности и их свойства
- •4.4.2. Основная теорема Шеннона для дискретного канала с шумом
- •4.4.3. Обсуждение основной теоремы Шеннона для канала с шумом
- •4.5. Пропускная способность непрерывного канала при наличии аддитивного шума
- •Литература
- •Приложение 1. Таблица неприводимых полиномов
- •Учебно-лабораторный практикум л абораторная работа 1: Исследование информативности источников дискретных сообщений.
- •Теоретическое введение
- •Шаг 2. Ввод текстовых файлов в Excel-таблицу с разбиением каждой строки текста на отдельные символы.
- •Шаг 3. Используя инструмент «гистограмма» пакета анализа надстройки Анализ данных, находим частоты появления каждого символа в текстах и по ним находим вероятности их появления в данном языке.
- •Шаг 4. Находим среднюю энтропию, приходящуюся на 1 букву сообщения.
- •Шаг 6. Возьмем короткий отрезок текста на одном из заданных языков и найдем количество заключенной в нем информации
- •Шаг 7. Проделаем те же операции с учетом зависимости двух соседних букв того же текста.
- •Шаг 8. Напишем отчет о выполненной работе с описанием всех вычислений и о том, как они выполнялись. Прокомментируйте результаты.
- •Шаг 9. Сдайте или отослать по электронной почте (alexm5@fromru.Com) отчет на проверку преподавателю. Шаг 10. Защитите лабораторную работу у преподавателя. Варианты задания
- •Результаты работы
- •Сдача работы
- •Вопросы для самопроверки
- •Литература
- •Приложение 1: Пример оформления титульного листа
- •Приложение 2: Порядок создания нестандартных функций при использовании табличного процессора Excel Введение
- •Подключение возможности использования нестандартных функций.
- •Создание нестандартной функции
- •Приложение 3: Описание функции впр
- •Лабораторная работа 2. Исследование методов дискретизации непрерывных сообщений по времени
- •Теоретическое введение.
- •Последовательность выполнения практической части работы
- •1. Знакомство с программой Wavosaur для записи и обработки звука.
- •2. Подключите к компьютеру головную гарнитуру (головной телефон и микрофон, рис. 2, слева) и нажмите кнопку Monitor input with vu meter, указанную на рис. 2 справа синей стрелкой.
- •3. Запись голоса и подготовка сигнала.
- •4. Импорт текстовых данных в Excel
- •Результаты работы
- •Литература
- •Вопросы для самопроверки
- •Иллюстрация к порядку вычисления ряда Найквиста-Котельникова
- •Лабораторная работа 3. Исследование оптимального квантования непрерывных сообщений по уровню.
- •Теоретическое введение.
- •Возможный вариант выполнения работы
- •Результаты работы
- •Литература
- •Вопросы для самопроверки
- •Лабораторная работа 4. Исследование оптимальных (в смысле минимальной средней длины кодового слова) кодов на примере кодов Шеннона-Фэно и Хаффмена.
- •Теоретическое введение.
- •Коды Хаффмена
- •Коды Шеннона−Фэно
- •Параметры эффективности оптимальных кодов
- •Особенности эффективных кодов.
- •Выполнение работы
- •Результаты работы
- •Литература
- •Вопросы для самопроверки
- •Лабораторная работа 5. Исследование кодов, обнаруживающих и исправляющих ошибки на примере линейного кода, исправляющего однократные ошибки.
- •Теоретическое введение.
- •Определение числа добавочных разрядов m.
- •Построение образующей матрицы
- •Порядок кодирования
- •4. Порядок декодирования
- •Выполнение работы
- •Результаты работы
- •Литература
- •Вопросы для самопроверки
- •12 Дэвид Хаффман (р. 9 августа 1925, Альянс, Огайо — 7 октября 1999, Санта Круз, Калифорния) — первопроходец в сфере информатики.
1.4. Общие замечания об измерении информации
Возможно большое количество определения и способов измерения информации.
Во всех определениях имеет место оценка неопределенности, неожиданности, многообразия, характеризуемая либо вероятностью, либо какой-либо другой мерой сложности.
Современные меры информации в значительной мере опираются на субъективные предпосылки.
После формализации понятия информации появляется возможность ее использования в ситуациях, для которых понятие информации по человеческим понятиям неприменимо. Это объясняется тем, что теория информации – математическая дисциплина и, например, физическое содержание вероятности в теории Шеннона в принципе может быть любым.
Вводимые определения информации могут быть беднее по смыслу того, что имеет в виду человек.
1.5. Энтропия непрерывных сообщений
Исходные данные часто представляются в виде непрерывных величин, например, температура воздуха или морской воды. Поэтому представляет интерес измерение количества содержащейся в таких сообщениях информации.
Как было сообщено выше, средняя энтропия
дискретного сообщения, входящего в
полную группу из m
независимых сообщений, находится по
формуле:
.
Эта формула справедлива, в частности, для сообщений, состоящих из конечного числа букв (в нашем случае m штук).
Если рассматривать попадание значения непрерывного сообщения в определенный интервал, как появление определенной буквы, то непрерывное сообщение можно рассматривать как предельный случай дискретного если число букв устремить к бесконечности (рис. 1.3).
Рис. 1.3. Представление непрерывного процесса в виде дискретной последовательности букв.
Для вычисления энтропии дискретного сообщения необходимо было знать множество букв и вероятности их появления. Аналогом набора вероятностей букв в непрерывном сообщении является плотность вероятностей f(a) распределения значений непрерывного сообщения (рис. 1.4).
Рис. 1.4. Вычисление вероятности попадания значений непрерывного процесса в некоторый интервал шириной ∆a.
Непрерывную величину можно считать предельным случаем квантованной по уровню, если размер шага квантования ∆a устремить к нулю.
Зная плотность распределения вероятности (дифференциальный закон распределения) и предполагая независимость соседних значений случайной величины, можно найти, используя известную формулу, среднюю энтропию одного ее значения:
,
где ak=k*∆a
Из теории вероятностей известно, что вероятность попадания случайной величины в некоторый интервал находится через дифференциальный закон ее распределения по формуле:
При достаточно гладкой функции P(a) и малом ∆a можно считать, что
.
Поэтому
.
Первое слагаемое в пределе превращается в интеграл:
.
Во втором слагаемом тоже образуется интеграл. Это определенный интеграл от дифференциального закона распределения с бесконечными пределами, который, как известно, равен 1. В результате получаем:
.
Ясно теперь, что первое слагаемое – конечное число, а второе - бесконечное. Как и следовало ожидать, энтропия непрерывного сообщения в математическом смысле бесконечно велика, что означает, что непрерывный сигнал несет в себе бесконечно большое количество шенноновской информации. Однако в реальной жизни это не так. Любое непрерывное сообщение, например показания термометра за окном или пружинных весов, человек так или иначе подвергает квантованию, что приводит к уменьшению количества информации по шеннону.
Таким образом, в математическом смысле непрерывные сигналы-сообщения не имеют абсолютной меры энтропии. Поэтому для них вводится понятие относительной энтропии. Это понятие подразумевает наличие эталона, с которым сравнивается энтропия непрерывного сообщения. В качестве такого эталона выбирается также непрерывное сообщение-сигнал, имеющий равномерный закон распределения в интервале ε (эпсилон). График равномерного закона приведен на рис. 1.5.
Рис. 1.5. График равномерного закона распределения.
Абсолютная энтропия такого эталонного сообщения равна:
.
Из-за второго члена H(ε) также бесконечно велика.
Относительная энтропия непрерывного сообщения в данном случае определяется как разность между абсолютной энтропией Hнепр этого сообщения и абсолютной энтропией H(ε) эталонного сообщения. Ее принято называть дифференциальной эпсилон-энтропией непрерывного сообщения. Она обозначается Hε и вычисляется по формуле:
.
Если положить ε=1, то дифференциальная энтропия (слово эпсилон часто не произносится) запишется в виде:
.
Видим, что формула дифференциальной энтропии похожа на формулу энтропии дискретного источника, но следует помнить, что она описывает не абсолютное, а относительное значение энтропии, когда за стандарт взята случайная величина, равномерно распределенная на единичном интервале.
Дифференциальная энтропия позволяет сравнивать различные непрерывные источники сообщений по степени информативности.