
- •Министерство образования и науки рф
- •080801 Прикладная информатика (по областям применения)
- •Сочи, 2010 г.
- •1. Меры информации 20
- •2. Квантование сигналов 46
- •3.8. Помехоустойчивое кодирование 96
- •Введение Курс лекций
- •Определение понятия информация
- •Фазы обращения информации
- •Некоторые определения
- •1. Меры информации
- •1.1. Структурные меры количества информации
- •1.1.1. Геометрическая мера
- •1.1.2. Комбинаторная мера
- •1.1.3. Аддитивная мера (мера Хартли)
- •1.2. Статистические меры
- •1.2.1. Энтропия и ее свойства.
- •1.2.1.1. Энтропия и средняя энтропия простого события
- •Метод множителей Лагранжа
- •1.2.1.2. Энтропия сложного события, состоящего из нескольких независимых событий
- •1.2.1.3. Вывод формулы среднего значения энтропии на букву сообщения
- •1.2.1.4. Энтропия сложного события, состоящего из нескольких зависимых событий
- •1.2.2. Некоторые выводы, касающиеся статистической меры количества информации Шеннона
- •1.2.3. Литература
- •1.2.4. Избыточность сообщения
- •1.2.5. Пример оценки количества информации при помощи статистической меры Шеннона
- •1.3. Семантические меры информации
- •1.3.1. Содержательность информации
- •1.3.2. Целесообразность информации
- •1.3.3. Динамическая энтропия
- •1.4. Общие замечания об измерении информации
- •1.5. Энтропия непрерывных сообщений
- •1.5.1. Экстремальные свойства энтропии непрерывных сообщений
- •1.5.1.1. Первый случай (значения сл. Величины ограничены интервалом)
- •1.5.1.2. Второй случай (заданы дисперсия и математическое ожидание сл. Величины)
- •1.5.1.3. Третий случай (сл. Величина принимает только положительные значения)
- •2. Квантование сигналов
- •2.1. Виды дискретизации (квантования)
- •2.2. Критерии точности представления квантованного сигнала
- •2.3. Элементы обобщенной спектральной теории сигналов
- •2.4. Дискретизация по времени
- •2.4.1. Разложение в ряд Котельникова (Теорема Котельникова)
- •2.4.1.1. Свойства функции отсчетов
- •2.4.1.2. О практическом использовании теоремы Котельникова
- •2.4.2. Выбор периода дискретизации (квантования по времени) по критерию наибольшего отклонения
- •2.4.2.1. Интерполяция при помощи полиномов Лагранжа
- •2.4.2.2. Оценка максимального значения ошибки при получении воспроизводящей функции на основе полинома Лагранжа
- •2.4.2.3. Схема дискретизации-передачи-восстановления сигнала
- •2.4.2.4. Расчет периода дискретизации при использовании для получения воспроизводящей функции полинома Лагранжа нулевого порядка
- •2.4.2.5. Расчет периода дискретизации при использовании для получения воспроизводящей функции полинома Лагранжа первого порядка
- •2.4.2.6. Расчет периода дискретизации при использовании для получения воспроизводящей функции полинома Лагранжа второго порядка
- •2.4.2.7. Обобщение на случай использования полиномов Лагранжа произвольного порядка
- •2.4.3. Выбор интервала дискретизации по критерию среднеквадратического отклонения
- •2.5. Квантование по уровню
- •2.5.1. Оптимальное квантование по уровню
- •2.5.2. Дисперсия ошибки в случае использования равномерной шкалы квантования по уровню
- •2.5.3. Расчет неравномерной оптимальной в смысле минимума дисперсии ошибки шкалы квантования.
- •2.5.4. Расчет неравномерной оптимальной в смысле максимума количества информации в квантованном сигнале шкалы квантования
- •2.5.5. Закон компандирования при условии равномерного закона распределения квантуемого сигнала
- •3. Кодирование информации
- •3.1. Общие понятия и определения. Цели кодирования
- •3.2. Элементы теории кодирования
- •3.3. Неравенство Крафта
- •3.4. Теорема об обобщении некоторых результатов, полученных для префиксных кодов, на все однозначно декодируемые коды
- •3.5. Основная теорема кодирования для канала связи без шума (теорема 3)
- •3.6. Теорема о минимальной средней длине кодового слова при поблочном кодировании (теорема 4)
- •3.7. Оптимальные неравномерные коды
- •3.7.1. Лемма 1. О существовании оптимального кода с одинаковой длиной кодовых слов двух наименее вероятных кодируемых букв
- •3.7.2. Лемма 2. Об оптимальности префиксного кода нередуцированного ансамбля, если префиксный код редуцированного ансамбля оптимален
- •3.7.3. Коды Хаффмена12
- •3.7.4. Коды Шеннона−Фэно
- •3.7.5. Параметры эффективности оптимальных кодов
- •3.7.6. Особенности эффективных кодов.
- •3.8. Помехоустойчивое кодирование
- •3.8.1. Классификация кодов
- •3.8.2. Простейшие модели цифровых каналов связи с помехами
- •3.8.3. Расчет вероятности искажения кодового слова в дсмк
- •3.8.4. Общие принципы использования избыточности
- •3.8.5. Граница Хэмминга
- •3.8.6. Избыточность помехоустойчивых кодов
- •3.8.7. Математическое введение к алгебраическим кодам
- •3.8.8. Линейные коды
- •3.8.9. Упрощённый способ построения линейного кода
- •Определение числа добавочных разрядов m.
- •Построение образующей матрицы
- •Порядок кодирования
- •4. Порядок декодирования
- •3.8.10. Двоичные циклические коды
- •3.8.11. Некоторые свойства циклических кодов
- •3.8.12. Построение кода с заданной корректирующей способностью
- •3.8.13. Матричное описание циклических кодов
- •3.8.14. Выбор образующего полинома
- •4. Передача информации
- •4.1. Виды каналов передачи информации
- •4.2. Разделение каналов связи
- •4.2.1. Частотное разделение
- •4.2.2. Временное разделение
- •4.2.3. Кодовое разделение
- •4.2.4. Разделение по уровню
- •4.2.5. Корреляционное разделение
- •4.2.6. Комбинированные методы разделения
- •4.3. Пропускная способность каналов связи
- •4.4. Пропускная способность дискретного канала связи с шумом
- •4.4.1. Типичные последовательности и их свойства
- •4.4.2. Основная теорема Шеннона для дискретного канала с шумом
- •4.4.3. Обсуждение основной теоремы Шеннона для канала с шумом
- •4.5. Пропускная способность непрерывного канала при наличии аддитивного шума
- •Литература
- •Приложение 1. Таблица неприводимых полиномов
- •Учебно-лабораторный практикум л абораторная работа 1: Исследование информативности источников дискретных сообщений.
- •Теоретическое введение
- •Шаг 2. Ввод текстовых файлов в Excel-таблицу с разбиением каждой строки текста на отдельные символы.
- •Шаг 3. Используя инструмент «гистограмма» пакета анализа надстройки Анализ данных, находим частоты появления каждого символа в текстах и по ним находим вероятности их появления в данном языке.
- •Шаг 4. Находим среднюю энтропию, приходящуюся на 1 букву сообщения.
- •Шаг 6. Возьмем короткий отрезок текста на одном из заданных языков и найдем количество заключенной в нем информации
- •Шаг 7. Проделаем те же операции с учетом зависимости двух соседних букв того же текста.
- •Шаг 8. Напишем отчет о выполненной работе с описанием всех вычислений и о том, как они выполнялись. Прокомментируйте результаты.
- •Шаг 9. Сдайте или отослать по электронной почте (alexm5@fromru.Com) отчет на проверку преподавателю. Шаг 10. Защитите лабораторную работу у преподавателя. Варианты задания
- •Результаты работы
- •Сдача работы
- •Вопросы для самопроверки
- •Литература
- •Приложение 1: Пример оформления титульного листа
- •Приложение 2: Порядок создания нестандартных функций при использовании табличного процессора Excel Введение
- •Подключение возможности использования нестандартных функций.
- •Создание нестандартной функции
- •Приложение 3: Описание функции впр
- •Лабораторная работа 2. Исследование методов дискретизации непрерывных сообщений по времени
- •Теоретическое введение.
- •Последовательность выполнения практической части работы
- •1. Знакомство с программой Wavosaur для записи и обработки звука.
- •2. Подключите к компьютеру головную гарнитуру (головной телефон и микрофон, рис. 2, слева) и нажмите кнопку Monitor input with vu meter, указанную на рис. 2 справа синей стрелкой.
- •3. Запись голоса и подготовка сигнала.
- •4. Импорт текстовых данных в Excel
- •Результаты работы
- •Литература
- •Вопросы для самопроверки
- •Иллюстрация к порядку вычисления ряда Найквиста-Котельникова
- •Лабораторная работа 3. Исследование оптимального квантования непрерывных сообщений по уровню.
- •Теоретическое введение.
- •Возможный вариант выполнения работы
- •Результаты работы
- •Литература
- •Вопросы для самопроверки
- •Лабораторная работа 4. Исследование оптимальных (в смысле минимальной средней длины кодового слова) кодов на примере кодов Шеннона-Фэно и Хаффмена.
- •Теоретическое введение.
- •Коды Хаффмена
- •Коды Шеннона−Фэно
- •Параметры эффективности оптимальных кодов
- •Особенности эффективных кодов.
- •Выполнение работы
- •Результаты работы
- •Литература
- •Вопросы для самопроверки
- •Лабораторная работа 5. Исследование кодов, обнаруживающих и исправляющих ошибки на примере линейного кода, исправляющего однократные ошибки.
- •Теоретическое введение.
- •Определение числа добавочных разрядов m.
- •Построение образующей матрицы
- •Порядок кодирования
- •4. Порядок декодирования
- •Выполнение работы
- •Результаты работы
- •Литература
- •Вопросы для самопроверки
- •12 Дэвид Хаффман (р. 9 августа 1925, Альянс, Огайо — 7 октября 1999, Санта Круз, Калифорния) — первопроходец в сфере информатики.
1.3. Семантические меры информации
Семантика4 отражает смысл сообщения. Семантические меры количества информации ближе к человеческому представлению об информации. Они отражают смысл, полезность, целесообразность, содержательность и другие стороны информации. Общим же недостатком семантических мер является слабость математического обоснования, трудность в определении исходных данных и вследствие этого малая распространенность.
1.3.1. Содержательность информации
Мера содержательности5 обозначается cont (от английского Content ─ содержание).
Содержательность события I выражается через функцию меры содержательности его отрицания:
Cont(I) = M(~I) = 1-M(I),
где I – рассматриваемое событие, M – функция меры содержательности, ~ – знак отрицания.
Функция меры содержательности события M(I) и функция меры содержательности антисобытия M(~I) (его отсутствия) определяются в терминах математической логики и имеют формальное сходство с вероятностью. Так M(I) + M(~I) =1, что аналогично свойству вероятности P(I)+P(~I)=1.
Как и вероятность, содержательность находится в интервале от 0 до 1:
0<=M(I)<=1 .
Количество информации согласно данной семантической мере называется логической оценкой или логической информацией. Она обозначается Inf и рассчитывается с помощью следующей зависимости:
.
Отличие статистической меры от логической состоит в том, что в первом случае учитывается вероятность реализации тех или иных событий, а во втором – меры их содержательности, что в некоторых случаях более удобно.
Из формулы логической оценки следует что с уменьшением содержательности до 0 количество логической информации также падает до 0. С ростом же содержательности до 1 количество логической информации стремится к бесконечности.
1.3.2. Целесообразность информации
Если информация используется в системах управления, то ее полезность разумно оценивать по тому эффекту, который она оказывает на результат управления. В связи с этим в 1960 г. советским ученым А.А. Харкевичем6 была предложена мера целесообразности информации, которая определяется как изменение вероятности достижения цели управления при получении дополнительной информации.
Полученная информация может быть пустой, т.е. не изменять вероятности достижения цели, и в этом случае ее мера равна 0.
В некоторых других случаях она может уменьшить вероятность достижения цели. В этом случае имеет место дезинформация, которая измеряется отрицательным количеством полученной информации.
Полученная информация может увеличить вероятность достижения цели. В этом случае количество полученной информации положительно.
Все эти случаи описываются эвристически полученной А.А. Харкевичем формулой меры целесообразности:
,
где Pн и Pк – начальная (до получения информации) и конечная (после получения информации) вероятности достижения цели.
1.3.3. Динамическая энтропия
Здесь энтропия рассматривается как функция времени. При этом преследуется цель – избавиться от неопределенности, т.е. добиться положения, когда энтропия равна 0. Такая ситуация характерна для задач распознавания образов, диагноза болезней, расследования преступлений и т.п.
Количество информации в этом случае рассчитывается как разность энтропии в предыдущий момент времени (до получения новых сведений в результате действий, выполняющихся с целью уменьшения неопределенности) и энтропии в последующий момент времени, т.е. информация характеризует динамику изменения энтропии во времени.
Обычно во всех вышеперечисленных задачах существует 2 набора объектов – возможные причины и возможные следствия. Связи между ними характеризуются набором взаимных или условных вероятностей Pij(t).
Здесь существует зависимость этих
вероятностей от времени. Энтропия
,
где n(t)
и m(t)
– меняющиеся количества причин и
следствий.
В процессе расследования преступления, действий по распознаванию образов и т.п. изменяются вероятности Pij, а также количество причин и следствий n(t) и m(t) (рис.1.2).
Рис. 1.2. Изменение энтропии во времени.
Новая энтропия:
.
Количество
полученной при этом информации:
.
По сути дела определение количества информации через динамическую энтропию не противоречит шенноновскому определению количества информации. Отличие заключается в специфике области применения и в следующих из этого выводах. Шенноновская теория развита с ориентацией на задачи связи при постоянных статистических характеристиках.