
- •Интеллектуальные информационные системы учебное пособие
- •Тула 2010
- •3. Экспертные системы 47
- •8. Системы с интеллектуальным интерфейсом 143
- •9. Многоагентные системы 158
- •Предисловие
- •1. Искусственный интеллект и интеллектуальные информационные системы
- •1.1. Введение в искусственный интеллект
- •1.1.1. Искусственный интеллект: основные понятия и решаемые задачи
- •1.1.2. Подходы к построению систем искусственного интеллекта
- •1.1.3. Интеллектуальные информационные системы: понятие и отличительные особенности
- •1.2. Основные классы интеллектуальных информационных систем
- •1.2.1. Экспертные системы
- •1.2.2. Самообучающиеся системы
- •1.2.3. Адаптивные информационные системы
- •1.2.4. Системы с интеллектуальным интерфейсом
- •1.2.5. Многоагентные системы
- •1.3. Основы проектирования интеллектуальных информационных систем
- •1.3.1. Структура и этапы разработки интеллектуальных информационных систем
- •1.3.2. Логическое проектирование
- •1.3.3. Физическое проектирование
- •1.3.4. Использование прототипного проектирования
- •Контрольные тесты
- •2. Традиционные способы представления и обработки знаний в интеллектуальных информационных системах
- •2.1. Знания и их использование в интеллектуальных информационных системах
- •2.1.1. Понятие знаний и их отличие от данных
- •2.1.2. Классификация знаний
- •2.1.3. Логический вывод. Использование дедукции, индукции и аналогии
- •2.1.4. Представление знаний в интеллектуальных информационных системах
- •2.2. Типичные модели представления знаний
- •2.2.1. Логическая модель
- •2.2.2. Продукционная модель
- •2.2.3. Семантическая сеть
- •2.2.4. Фреймовая модель
- •2.2.5. Объектно-ориентированная модель
- •2.3. Представление и формализация нечетких знаний
- •2.3.1. Основные определения нечетких множеств
- •2.3.2. Операции с нечеткими множествами
- •2.3.3. Нечеткие отношения
- •2.3.4. Нечеткая и лингвистическая переменные
- •Контрольные тесты
- •3. Экспертные системы
- •3.1. Структура и режимы работы экспертных систем
- •3.1.1. Основные элементы экспертных систем
- •3.1.2. Режимы работы экспертных систем
- •3.1.3. Участники разработки экспертных систем
- •3.2. Классификация экспертных систем
- •3.2.1. Классификация по сложности решаемых задач
- •3.2.2. Классификация по типу решаемых задач
- •3.2.3. Основные классы экспертных систем: классифицирующие, доопределяющие, трансформирующие, многоагентные
- •3.3. Поиск решений в экспертных системах
- •3.3.1. Поиск в одном пространстве
- •3.3.2. Поиск в иерархии пространств
- •3.3.3. Поиск в случае недетерминированности знаний
- •3.3.4. Алгоритм реализации логического вывода в экспертных системах
- •3.4. Методы извлечения знаний в экспертных системах
- •3.4.1. Классификация методов извлечения знаний
- •3.4.2. Коммуникативные методы извлечения знаний
- •3.4.3. Текстологические методы извлечения знаний
- •Контрольные тесты
- •4. Оlap-технология
- •4.1. Основные понятия
- •4.1.1. Хранилище данных
- •4.1.2. Применение информационных хранилищ. Извлечение знаний из данных
- •4.1.3. Основная идея olap-технологии
- •12 Признаков olap данных
- •4.1.4. Структура хранилища данных в оlap-системах
- •4.2. Модели и алгоритмы построения olap-систем
- •4.2.1. Rolap – обработка на основе запросов к реляционным базам данных
- •4.2.2. Molap – многомерное представление данных
- •4.2.3. Holap – гибридные системы
- •Контрольные тесты
- •5. Интеллектуальный анализ данных
- •5.1. Методы интеллектуального анализа данных
- •5.1.1. Основные понятия
- •5.1.2. Типы закономерностей, выявляемых методами интеллектуального анализа данных
- •5.1.3. Стадии интеллектуального анализа данных
- •5.1.4. Индуктивное и абдуктивное обучение
- •5.2. Алгоритмы интеллектуального анализа данных
- •5.2.2. Байесовская классификация
- •5.2.3. Деревья решений
- •5.2.4. Методы классификации с использованием функций
- •5.2.5. Метод "ближайшего соседа" или системы рассуждений на основе аналогичных случаев
- •5.2.6. Методы кластерного анализа
- •5.2.7. Развитие алгоритмов интеллектуального анализа данных
- •Контрольные тесты
- •6. Нейронные сети
- •6.1. Основные понятия
- •6.1.1. Модель искусственного нейрона
- •6.1.2. Модели нейронных сетей
- •6.1.3. Статические нейронные сети
- •6.1.4. Рекуррентные нейронные сети
- •6.2. Проектирование нейронных сетей
- •6.2.1. Этапы проектирования нейронных сетей
- •6.2.2. Метод обратного распространения ошибки
- •6.2.3. Методы обучения нейронных сетей: обучение без учителя
- •6.2.4. Нейронные сети Хопфилда и Хэмминга
- •6.2.5. Использование генетических алгоритмов для обучения нейронной сети
- •Контрольные тесты
- •5. Адаптивные системы
- •5.1. Основные классы адаптивных систем
- •5.1.1. Понятие и классификация адаптивных систем
- •5.1.2. Самонастраивающиеся адаптивные системы
- •5.1.3. Самоорганизующиеся адаптивные системы
- •5.1.4. Самообучающиеся адаптивные системы
- •5.2. Проектирование адаптивных систем
- •5.2.1. Общие подходы и требования к проектированию
- •5.2.2. Оригинальное проектирование адаптивных систем
- •5.2.3. Компонентное проектирование адаптивных систем
- •Контрольные тесты
- •8. Системы с интеллектуальным интерфейсом
- •8.1. Взаимодействие пользователя с информационной системой на естественном языке
- •8.1.1. Компьютерно-лингвистический подход к диалогу. Проблемы формализации естественном языке
- •8.1.2. Задачи обработки текстов на естественном языке
- •8.1.3. Уровни понимания текста на естественном языке
- •8.2. Построение естественно-языковых интерфейсов
- •8.2.1. Лингвистическая трансляция
- •8.2.2. Обобщенная схема естественно-языковой системы
- •8.2.3. Компонент понимания высказываний
- •8.2.4. Компонент генерации высказываний
- •8.3. Прикладные системы с интеллектуальным интерфейсом
- •8.3.1. Интеллектуальные базы данных
- •8.3.2. Интеллектуальные гипертекстовые системы
- •8.3.3. Системы когнитивной графики
- •Контрольные тесты
- •9. Многоагентные системы
- •9.1. Характеристика агента как элемента многоагентной системы
- •9.1.1. Агент: понятие и классификация
- •9.1.2. Отличительные свойства агента
- •9.2. Процесс самоорганизации в многоагентных системах
- •9.2.1. Понятие многоагентной системы
- •9.2.2. Структура памяти и принципы мышление агента
- •9.2.3. Самоорганизация многоагентной системы
- •9.2.4. Архитектура и интерфейс многоагентной системы
- •Контрольные тесты
- •Библиографический список
- •Приложение
- •Интеллектуальные информационные системы
- •3000600, Г.Тула, пр.Ленина, 92.
- •3000600, Г.Тула, ул.Болдина, 151
1.2.2. Самообучающиеся системы
Самообучающиеся системы осуществляют процедуру приобретения знаний, которая может быть использована, когда эксперт не существует; недостаточно надежен; слишком дорог; не доступен постоянно во времени. К сожалению, эксперты, обладающие знаниями в различных проблемных областях, характеризуются всеми этими чертами в различной степени. Часто возникает проблема достоверности знаний, получаемых от эксперта, их соответствия эмпирической базе.
С
истемы
автоматического приобретения знаний
могут быть элементом экспертной системы,
позволяя выводить новые знания из
существующих примеров ситуаций реальной
практики (данных), заменяя или эмпирически
подтверждая эвристические знания
эксперта (рис. 1.7).
Система генерирует знания, полученные в результате изучения среды. В процессе сравнения выходов ИИС и исследуемого объекта выявляется расхождение, которое определяет дальнейший процесс обучения (рис. 1.8).
С
мысл
машинного обучения состоит в следующем.
На основе данных, характеризующих
проблемную область, необходимо провести
их обобщение и систематизацию, выделив
тем самым практически полезные зависимости
и закономерности. Обучение по примерам
можно реализовать различными методами.
Параметрическое обучение заключается
в определении общего вида правила,
формирующего результат вывода, и в
последующей корректировке входящих в
его параметров, зависящих от конкретных
данных. Обучение по аналогии базируется
на гипотезе, что если две ситуации
подобны по ряду признаков, то они подобны
и по принимаемых в них решениям (еще по
одному признаку). Индуктивное обучение
позволяет обобщить примеры, выделив
основные признаки их принадлежности к
классам. Обучение на основе нейронных
сетей предполагает выделение зависимостей
проблемной области на основе построения
математических
функции,
которые определяют зависимости между
входными
и выходными признаками. В соответствии
с видом обучения выделяют основные
классы самообучающихся систем.
Индуктивные системы осуществляют обобщение примеров, выявляют подмножества примеров, относящихся к одним и тем же подклассам, и определяют для них значимые признаки, извлекая из данных знания.
Системы, основанные на прецедентах (CBR-системы). В этих системах база знаний содержит описания не обобщенных ситуаций, а собственно сами ситуации или прецеденты. Так же, как и для индуктивных систем, прецеденты описываются множеством признаков, по которым строятся индексы быстрого поиска. Но в отличие от индуктивных систем допускается нечеткий поиск с получением множества допустимых альтернатив, каждая из которых оценивается некоторым коэффициентом уверенности. Далее наиболее подходящие решения адаптируются по специальным алгоритмам к реальным ситуациям. Обучение системы сводится к запоминанию каждой новой обработанной ситуации с принятыми решениями в базе прецедентов.
Системы, основанные на прецедентах, применяются как системы распространения знаний с расширенными возможностями или как в системах контекстной помощи, в множестве прикладных задач – в медицине, управлении проектами, для анализа и реорганизации среды, для разработки товаров массового спроса с учетом предпочтений разных групп потребителей, и т.д.
В нейронных сетях в результате обучения на примерах строятся математические решающие функции (передаточные функции или функции активации), которые определяют зависимости между входными и выходными признаками (сигналами). Каждая такая функция, называемая по аналогии с элементарной единицей человеческого мозга - нейроном, отображает зависимость значения выходного признака от взвешенной суммы значений входных признаков, в которой вес входного признака показывает степень влияния входного признака на выходной. Нейроны могут быть связаны между собой, когда выход одного нейрона является входом другого. Таким образом, строится нейронная сеть, в которой нейроны, находящиеся на одном уровне, образуют слои.
Возможность нелинейного характера функциональной зависимости выходных и входных признаков позволяет строить более точные классификации. Сам процесс решения задач фактически имитируется параллельный процесс прохода по нейронной сети в отличие от последовательного в индуктивных системах. Нейронные сети могут быть реализованы и аппаратно в виде нейрокомпьютеров с ассоциативной памятью. Последнее время нейронные сети получили стремительное развитие и очень активно используются в финансовой области.
Самообучающиеся системы, построенные на основе перечисленных выше технологий, применяются для решения задачи распознавания образов. Образ, класс — классификационная группировка в системе классификации, объединяющая (выделяющая) определенную группу объектов по некоторому признаку. Образное восприятие мира — одно из загадочных свойств живого мозга, позволяющее разобраться в бесконечном потоке воспринимаемой информации и сохранять ориентацию в океане разрозненных данных о внешнем мире. Воспринимая внешний мир, мы всегда производим классификацию воспринимаемых ощущений, т.е. разбиваем их на группы похожих, но не тождественных явлений. Образы обладают характерным свойством, проявляющимся в том, что ознакомление с конечным числом явлений из одного и того же множества дает возможность узнавать сколь угодно большое число его представителей.
Для оперативного анализа данных (OLAP - технологии) используется информационное хранилище извлеченной значимой информации из оперативной базы данных. Типичными задачами оперативного ситуационного анализа являются определение профиля потребителей конкретного товара; предсказание изменений ситуации на рынке; анализ зависимостей и др. Применение информационных хранилищ на практике все в большей степени демонстрирует необходимость интеграции интеллектуальных и традиционных информационных технологий, комбинированное использование различных методов представления и вывода знаний, усложнение архитектуры информационных систем.
Для извлечения значимой информации из хранилищ данных используются специальные методы (Data Mining или Knowledge Discovery), основанные или на применении многомерных статистических таблиц, или индуктивных методов построения деревьев решений, или нейронных сетей. Формулирование запроса осуществляется в результате применения интеллектуального интерфейса, позволяющего в диалоге гибко определять значимые признаки анализа.
Общие недостатки, свойственные всем самообучающимся системам, заключаются в следующем:
- возможна неполнота и/или зашумленность (избыточность) обучающей выборки и, как следствие, относительная адекватность базы знаний возникающим проблемам;
- возникают проблемы, связанные с плохой смысловой ясностью зависимостей признаков и, как следствие, неспособность объяснения пользователям получаемых результатов;
- ограничения в размерности признакового пространства вызывают неглубокое описание проблемной области и узкую направленность применения.