
- •Интеллектуальные информационные системы учебное пособие
- •Тула 2010
- •3. Экспертные системы 47
- •8. Системы с интеллектуальным интерфейсом 143
- •9. Многоагентные системы 158
- •Предисловие
- •1. Искусственный интеллект и интеллектуальные информационные системы
- •1.1. Введение в искусственный интеллект
- •1.1.1. Искусственный интеллект: основные понятия и решаемые задачи
- •1.1.2. Подходы к построению систем искусственного интеллекта
- •1.1.3. Интеллектуальные информационные системы: понятие и отличительные особенности
- •1.2. Основные классы интеллектуальных информационных систем
- •1.2.1. Экспертные системы
- •1.2.2. Самообучающиеся системы
- •1.2.3. Адаптивные информационные системы
- •1.2.4. Системы с интеллектуальным интерфейсом
- •1.2.5. Многоагентные системы
- •1.3. Основы проектирования интеллектуальных информационных систем
- •1.3.1. Структура и этапы разработки интеллектуальных информационных систем
- •1.3.2. Логическое проектирование
- •1.3.3. Физическое проектирование
- •1.3.4. Использование прототипного проектирования
- •Контрольные тесты
- •2. Традиционные способы представления и обработки знаний в интеллектуальных информационных системах
- •2.1. Знания и их использование в интеллектуальных информационных системах
- •2.1.1. Понятие знаний и их отличие от данных
- •2.1.2. Классификация знаний
- •2.1.3. Логический вывод. Использование дедукции, индукции и аналогии
- •2.1.4. Представление знаний в интеллектуальных информационных системах
- •2.2. Типичные модели представления знаний
- •2.2.1. Логическая модель
- •2.2.2. Продукционная модель
- •2.2.3. Семантическая сеть
- •2.2.4. Фреймовая модель
- •2.2.5. Объектно-ориентированная модель
- •2.3. Представление и формализация нечетких знаний
- •2.3.1. Основные определения нечетких множеств
- •2.3.2. Операции с нечеткими множествами
- •2.3.3. Нечеткие отношения
- •2.3.4. Нечеткая и лингвистическая переменные
- •Контрольные тесты
- •3. Экспертные системы
- •3.1. Структура и режимы работы экспертных систем
- •3.1.1. Основные элементы экспертных систем
- •3.1.2. Режимы работы экспертных систем
- •3.1.3. Участники разработки экспертных систем
- •3.2. Классификация экспертных систем
- •3.2.1. Классификация по сложности решаемых задач
- •3.2.2. Классификация по типу решаемых задач
- •3.2.3. Основные классы экспертных систем: классифицирующие, доопределяющие, трансформирующие, многоагентные
- •3.3. Поиск решений в экспертных системах
- •3.3.1. Поиск в одном пространстве
- •3.3.2. Поиск в иерархии пространств
- •3.3.3. Поиск в случае недетерминированности знаний
- •3.3.4. Алгоритм реализации логического вывода в экспертных системах
- •3.4. Методы извлечения знаний в экспертных системах
- •3.4.1. Классификация методов извлечения знаний
- •3.4.2. Коммуникативные методы извлечения знаний
- •3.4.3. Текстологические методы извлечения знаний
- •Контрольные тесты
- •4. Оlap-технология
- •4.1. Основные понятия
- •4.1.1. Хранилище данных
- •4.1.2. Применение информационных хранилищ. Извлечение знаний из данных
- •4.1.3. Основная идея olap-технологии
- •12 Признаков olap данных
- •4.1.4. Структура хранилища данных в оlap-системах
- •4.2. Модели и алгоритмы построения olap-систем
- •4.2.1. Rolap – обработка на основе запросов к реляционным базам данных
- •4.2.2. Molap – многомерное представление данных
- •4.2.3. Holap – гибридные системы
- •Контрольные тесты
- •5. Интеллектуальный анализ данных
- •5.1. Методы интеллектуального анализа данных
- •5.1.1. Основные понятия
- •5.1.2. Типы закономерностей, выявляемых методами интеллектуального анализа данных
- •5.1.3. Стадии интеллектуального анализа данных
- •5.1.4. Индуктивное и абдуктивное обучение
- •5.2. Алгоритмы интеллектуального анализа данных
- •5.2.2. Байесовская классификация
- •5.2.3. Деревья решений
- •5.2.4. Методы классификации с использованием функций
- •5.2.5. Метод "ближайшего соседа" или системы рассуждений на основе аналогичных случаев
- •5.2.6. Методы кластерного анализа
- •5.2.7. Развитие алгоритмов интеллектуального анализа данных
- •Контрольные тесты
- •6. Нейронные сети
- •6.1. Основные понятия
- •6.1.1. Модель искусственного нейрона
- •6.1.2. Модели нейронных сетей
- •6.1.3. Статические нейронные сети
- •6.1.4. Рекуррентные нейронные сети
- •6.2. Проектирование нейронных сетей
- •6.2.1. Этапы проектирования нейронных сетей
- •6.2.2. Метод обратного распространения ошибки
- •6.2.3. Методы обучения нейронных сетей: обучение без учителя
- •6.2.4. Нейронные сети Хопфилда и Хэмминга
- •6.2.5. Использование генетических алгоритмов для обучения нейронной сети
- •Контрольные тесты
- •5. Адаптивные системы
- •5.1. Основные классы адаптивных систем
- •5.1.1. Понятие и классификация адаптивных систем
- •5.1.2. Самонастраивающиеся адаптивные системы
- •5.1.3. Самоорганизующиеся адаптивные системы
- •5.1.4. Самообучающиеся адаптивные системы
- •5.2. Проектирование адаптивных систем
- •5.2.1. Общие подходы и требования к проектированию
- •5.2.2. Оригинальное проектирование адаптивных систем
- •5.2.3. Компонентное проектирование адаптивных систем
- •Контрольные тесты
- •8. Системы с интеллектуальным интерфейсом
- •8.1. Взаимодействие пользователя с информационной системой на естественном языке
- •8.1.1. Компьютерно-лингвистический подход к диалогу. Проблемы формализации естественном языке
- •8.1.2. Задачи обработки текстов на естественном языке
- •8.1.3. Уровни понимания текста на естественном языке
- •8.2. Построение естественно-языковых интерфейсов
- •8.2.1. Лингвистическая трансляция
- •8.2.2. Обобщенная схема естественно-языковой системы
- •8.2.3. Компонент понимания высказываний
- •8.2.4. Компонент генерации высказываний
- •8.3. Прикладные системы с интеллектуальным интерфейсом
- •8.3.1. Интеллектуальные базы данных
- •8.3.2. Интеллектуальные гипертекстовые системы
- •8.3.3. Системы когнитивной графики
- •Контрольные тесты
- •9. Многоагентные системы
- •9.1. Характеристика агента как элемента многоагентной системы
- •9.1.1. Агент: понятие и классификация
- •9.1.2. Отличительные свойства агента
- •9.2. Процесс самоорганизации в многоагентных системах
- •9.2.1. Понятие многоагентной системы
- •9.2.2. Структура памяти и принципы мышление агента
- •9.2.3. Самоорганизация многоагентной системы
- •9.2.4. Архитектура и интерфейс многоагентной системы
- •Контрольные тесты
- •Библиографический список
- •Приложение
- •Интеллектуальные информационные системы
- •3000600, Г.Тула, пр.Ленина, 92.
- •3000600, Г.Тула, ул.Болдина, 151
5.2.7. Развитие алгоритмов интеллектуального анализа данных
Эволюционное программирование. Одно из направлений эволюционного программирования связано с поиском зависимости целевых переменных от остальных в форме функций какого-то определенного вида. Например, в одном из наиболее удачных алгоритмов этого типа — методе группового учета аргументов зависимость ищут в форме полиномов.
Data Mining — далеко не основная область применения генетических алгоритмов. Их нужно рассматривать скорее как мощное средство решения разнообразных комбинаторных задач и задач оптимизации. Тем не менее генетические алгоритмы вошли сейчас в стандартный инструментарий методов Data Mining, поэтому они и включены в данный обзор.
Пусть нам надо найти решение задачи, наиболее оптимальное с точки зрения некоторого критерия. Пусть каждое решение полностью описывается некоторым набором чисел или величин нечисловой природы. Скажем, если нам надо выбрать совокупность фиксированного числа параметров рынка, наиболее выраженно влияющих на его динамику, это будет набор имен этих параметров. Об этом наборе можно говорить как о совокупности хромосом, определяющих качества индивида — данного решения поставленной задачи. Значения параметров, определяющих решение, будут тогда называться генами. Поиск оптимального решения при этом похож на эволюцию популяции индивидов, представленных их наборами хромосом. В этой эволюции действуют три механизма: отбор сильнейших — наборов хромосом, которым соответствуют наиболее оптимальные решения; скрещивание — производство новых индивидов при помощи смешивания хромосомных наборов отобранных индивидов; и мутации — случайные изменения генов у некоторых индивидов популяции. В результате смены поколений в конце концов вырабатывается такое решение поставленной задачи, которое уже не может быть далее улучшено.
Недостатки генетических алгоритмов. Критерий отбора хромосом и сама процедура являются эвристическими и далеко не гарантируют нахождения “лучшего” решения. Как и в реальной жизни, эволюцию может “заклинить” на какой-либо непродуктивной ветви. И, наоборот, можно привести примеры, как два неперспективных родителя, которые будут исключены из эволюции генетическим алгоритмом, оказываются способными произвести высокоэффективного потомка. Это особенно становится заметно при решении высокоразмерных задач со сложными внутренними связями.
Глубинный анализ данных. Новая технология Deep Data Mining (DDM) основывается на представлениях специальной локальной геометрии. В этой геометрии каждый объект существует в собственном локальном пространстве событий с индивидуальной метрикой. За счет свойств локальных пространств процедура поиска логических закономерностей в данных получает геометрическое истолкование.
Перебор вариантов при поиске логических закономерностей методами локальной геометрии практически отсутствует. Поиск осуществляется с помощью модифицированного аппарата линейной алгебры.
Технология DDM дает возможность обнаруживать в данных IF ... THEN правила, включающие десятки, сотни и тысячи совместно встречающихся логических событий, характерных для одной совокупности данных и не характерных для всех остальных. Эффективность результатов близка к потенциально возможной эффективности поиска правил путем полного перебора
Существенным дополнением в новой технологии DDM является использование приема “данные + шум”. Этот прием заключается во введении в анализ специальных фальсификаторов — объектов, равномерно в вероятностном смысле распределенных в пространстве событий. Доля таких фальсификаторов может соответствовать и даже в два—три раза превышать долю исходной информации. “Столкновение” данных с фальсификаторами способствует устойчивости найденных логических закономерностей.
Результаты, полученные по новой технологии DDM, выдаются в виде таблицы IF ... THEN правил с указанием их характеристик (точности и полноты) и дендрограммы полученных правил с описанием обобщающих понятий и метапонятий.
В целом новая технология DDM для обнаружения закономерностей в базах данных имеет следующие преимущества:
1) Поиск IF ... THEN правил в данных осуществляется без перебора вариантов.
2) Устойчивость закономерностей проверяется с помощью множества фальсификаторов.
Выявляется метаструктура логических закономерностей в данных.
4) Минимальные ошибки (в задачах классификации, распознавания образов, прогнозирования).