
- •Интеллектуальные информационные системы учебное пособие
- •Тула 2010
- •3. Экспертные системы 47
- •8. Системы с интеллектуальным интерфейсом 143
- •9. Многоагентные системы 158
- •Предисловие
- •1. Искусственный интеллект и интеллектуальные информационные системы
- •1.1. Введение в искусственный интеллект
- •1.1.1. Искусственный интеллект: основные понятия и решаемые задачи
- •1.1.2. Подходы к построению систем искусственного интеллекта
- •1.1.3. Интеллектуальные информационные системы: понятие и отличительные особенности
- •1.2. Основные классы интеллектуальных информационных систем
- •1.2.1. Экспертные системы
- •1.2.2. Самообучающиеся системы
- •1.2.3. Адаптивные информационные системы
- •1.2.4. Системы с интеллектуальным интерфейсом
- •1.2.5. Многоагентные системы
- •1.3. Основы проектирования интеллектуальных информационных систем
- •1.3.1. Структура и этапы разработки интеллектуальных информационных систем
- •1.3.2. Логическое проектирование
- •1.3.3. Физическое проектирование
- •1.3.4. Использование прототипного проектирования
- •Контрольные тесты
- •2. Традиционные способы представления и обработки знаний в интеллектуальных информационных системах
- •2.1. Знания и их использование в интеллектуальных информационных системах
- •2.1.1. Понятие знаний и их отличие от данных
- •2.1.2. Классификация знаний
- •2.1.3. Логический вывод. Использование дедукции, индукции и аналогии
- •2.1.4. Представление знаний в интеллектуальных информационных системах
- •2.2. Типичные модели представления знаний
- •2.2.1. Логическая модель
- •2.2.2. Продукционная модель
- •2.2.3. Семантическая сеть
- •2.2.4. Фреймовая модель
- •2.2.5. Объектно-ориентированная модель
- •2.3. Представление и формализация нечетких знаний
- •2.3.1. Основные определения нечетких множеств
- •2.3.2. Операции с нечеткими множествами
- •2.3.3. Нечеткие отношения
- •2.3.4. Нечеткая и лингвистическая переменные
- •Контрольные тесты
- •3. Экспертные системы
- •3.1. Структура и режимы работы экспертных систем
- •3.1.1. Основные элементы экспертных систем
- •3.1.2. Режимы работы экспертных систем
- •3.1.3. Участники разработки экспертных систем
- •3.2. Классификация экспертных систем
- •3.2.1. Классификация по сложности решаемых задач
- •3.2.2. Классификация по типу решаемых задач
- •3.2.3. Основные классы экспертных систем: классифицирующие, доопределяющие, трансформирующие, многоагентные
- •3.3. Поиск решений в экспертных системах
- •3.3.1. Поиск в одном пространстве
- •3.3.2. Поиск в иерархии пространств
- •3.3.3. Поиск в случае недетерминированности знаний
- •3.3.4. Алгоритм реализации логического вывода в экспертных системах
- •3.4. Методы извлечения знаний в экспертных системах
- •3.4.1. Классификация методов извлечения знаний
- •3.4.2. Коммуникативные методы извлечения знаний
- •3.4.3. Текстологические методы извлечения знаний
- •Контрольные тесты
- •4. Оlap-технология
- •4.1. Основные понятия
- •4.1.1. Хранилище данных
- •4.1.2. Применение информационных хранилищ. Извлечение знаний из данных
- •4.1.3. Основная идея olap-технологии
- •12 Признаков olap данных
- •4.1.4. Структура хранилища данных в оlap-системах
- •4.2. Модели и алгоритмы построения olap-систем
- •4.2.1. Rolap – обработка на основе запросов к реляционным базам данных
- •4.2.2. Molap – многомерное представление данных
- •4.2.3. Holap – гибридные системы
- •Контрольные тесты
- •5. Интеллектуальный анализ данных
- •5.1. Методы интеллектуального анализа данных
- •5.1.1. Основные понятия
- •5.1.2. Типы закономерностей, выявляемых методами интеллектуального анализа данных
- •5.1.3. Стадии интеллектуального анализа данных
- •5.1.4. Индуктивное и абдуктивное обучение
- •5.2. Алгоритмы интеллектуального анализа данных
- •5.2.2. Байесовская классификация
- •5.2.3. Деревья решений
- •5.2.4. Методы классификации с использованием функций
- •5.2.5. Метод "ближайшего соседа" или системы рассуждений на основе аналогичных случаев
- •5.2.6. Методы кластерного анализа
- •5.2.7. Развитие алгоритмов интеллектуального анализа данных
- •Контрольные тесты
- •6. Нейронные сети
- •6.1. Основные понятия
- •6.1.1. Модель искусственного нейрона
- •6.1.2. Модели нейронных сетей
- •6.1.3. Статические нейронные сети
- •6.1.4. Рекуррентные нейронные сети
- •6.2. Проектирование нейронных сетей
- •6.2.1. Этапы проектирования нейронных сетей
- •6.2.2. Метод обратного распространения ошибки
- •6.2.3. Методы обучения нейронных сетей: обучение без учителя
- •6.2.4. Нейронные сети Хопфилда и Хэмминга
- •6.2.5. Использование генетических алгоритмов для обучения нейронной сети
- •Контрольные тесты
- •5. Адаптивные системы
- •5.1. Основные классы адаптивных систем
- •5.1.1. Понятие и классификация адаптивных систем
- •5.1.2. Самонастраивающиеся адаптивные системы
- •5.1.3. Самоорганизующиеся адаптивные системы
- •5.1.4. Самообучающиеся адаптивные системы
- •5.2. Проектирование адаптивных систем
- •5.2.1. Общие подходы и требования к проектированию
- •5.2.2. Оригинальное проектирование адаптивных систем
- •5.2.3. Компонентное проектирование адаптивных систем
- •Контрольные тесты
- •8. Системы с интеллектуальным интерфейсом
- •8.1. Взаимодействие пользователя с информационной системой на естественном языке
- •8.1.1. Компьютерно-лингвистический подход к диалогу. Проблемы формализации естественном языке
- •8.1.2. Задачи обработки текстов на естественном языке
- •8.1.3. Уровни понимания текста на естественном языке
- •8.2. Построение естественно-языковых интерфейсов
- •8.2.1. Лингвистическая трансляция
- •8.2.2. Обобщенная схема естественно-языковой системы
- •8.2.3. Компонент понимания высказываний
- •8.2.4. Компонент генерации высказываний
- •8.3. Прикладные системы с интеллектуальным интерфейсом
- •8.3.1. Интеллектуальные базы данных
- •8.3.2. Интеллектуальные гипертекстовые системы
- •8.3.3. Системы когнитивной графики
- •Контрольные тесты
- •9. Многоагентные системы
- •9.1. Характеристика агента как элемента многоагентной системы
- •9.1.1. Агент: понятие и классификация
- •9.1.2. Отличительные свойства агента
- •9.2. Процесс самоорганизации в многоагентных системах
- •9.2.1. Понятие многоагентной системы
- •9.2.2. Структура памяти и принципы мышление агента
- •9.2.3. Самоорганизация многоагентной системы
- •9.2.4. Архитектура и интерфейс многоагентной системы
- •Контрольные тесты
- •Библиографический список
- •Приложение
- •Интеллектуальные информационные системы
- •3000600, Г.Тула, пр.Ленина, 92.
- •3000600, Г.Тула, ул.Болдина, 151
5.1.4. Индуктивное и абдуктивное обучение
Все методы ИАД делятся на две большие группы по принципу работы с обучающей выборкой. В первом случае исходные данные хранятся в явном детализированном виде и непосредственно используются для прогностического моделирования и/или анализа исключений. Это так называемые методы на основе анализа прецедентов (абдуктивное обучение). Во втором случае информация вначале извлекается из первичных данных и преобразуется в некоторые формальные конструкции – индуктивное обучение (деревья решений, правила продукции и т.п.). Этот этап выполняется на стадии свободного поиска, которая у первой группы в принципе отсутствует.
Индуктивные системы. В основе индуктивных систем лежат методы автоматической классификации примеров ситуаций реальной практики. Примеры реальных ситуаций накапливаются за некоторый исторический период и составляют обучающую выборку. Эти примеры описываются множеством признаков классификации.
В результате обучения системы автоматически строятся обобщенные правила или функции, определяющие принадлежность ситуаций классам, которыми обученная система пользуется при интерпретации новых возникающих ситуаций. Таким образом, автоматически формируется база знаний, используемая, как правило, при решении задач классификации и прогнозирования. Эта база знаний периодически автоматически корректируется по мере накопления опыта реальных ситуаций, что позволяет сократить затраты на ее создание и обновление.
Индуктивное обучение заключается в том, чтобы получить применимые правила из изучения прошлых специфических примеров. В основу индуктивного обучения положены принципы индуктивных умозаключений. Индуктивным называется умозаключение, в котором на основании принадлежности признака отдельным предметам или частям некоторого класса делают вывод о его принадлежности классу в целом. В случае неполной индукции — на основе принадлежности признака некоторым элементам или частям класса— делают вывод о его принадлежности классу в целом.
Таким образом, индуктивный вывод – это построение объясняющего правила на основе заданных данных, включает процедуры анализа обучающей выборки, формирование гипотез (правил), проверку результатов обучения.
Будем рассматривать результат индуктивного обучения как множество правил продукции. Ситуацию обучения будем описывать следующим образом: из одного или более примеров, в которых действие явилось адекватной реакцией на ситуацию делаем вывод, что действие общего вида является адекватным видом реакции на обобщенную ситуацию. В общем случае определение понятия применимо к некоторому множеству ситуаций, которое называется положительными примерами и не применимо к другому множеству, которое называется негативными примерами.
Системы на прецедентах. Обучение может основываться также на аналогии. Умозаключение по аналогии — это вывод о принадлежности определенного признака единичному объекту (предмету, событию, отношению или признаку) на основе его сходства в существенных чертах с другим уже известным единичным объектом.
Умозаключению по аналогии всегда предшествует операция сравнения двух объектов, которая позволяет установить сходство и различие между ними. При этом для аналогии требуется сходство в существенных признаках и различие в несущественных.
Умозаключения такого типа реализованы в системах, основанных на прецедентах (CBR-системы). В этих системах база знаний содержит описания не обобщенных ситуаций, а собственно сами ситуации или прецеденты. Так же, как и для индуктивных систем, прецеденты описываются множеством признаков, по которым строятся индексы быстрого поиска.
Но в отличие от индуктивных систем допускается нечеткий поиск с получением множества допустимых альтернатив, каждая из которых оценивается некоторым коэффициентом уверенности. Далее наиболее подходящие решения адаптируются по специальным алгоритмам к реальным ситуациям. Обучение системы сводится к запоминанию каждой новой обработанной ситуации с принятыми решениями в базе прецедентов.
Алгоритмы для таких задач основаны обычно на сравнении прецедентов с новым случаем (в какой-либо метрике), с использованием зависимостей между атрибутами случаев и атрибутами решения. Такие зависимости могут задаваться человеком при построении базы случаев, или обнаруживаться в базе случаев автоматически.
При поиске решения для целевой проблемы выполняется адаптация уже имеющегося в базе прецедентов решения. Для этой адаптации и используются означенные зависимости. Существуют гипотезы, что сходство проблем налагает ограничения на сходство соответствующих гипотез в форме слабой связи между ними. Это обстоятельство и используется для ограничения области поиска решений.
Системы СВR показывают неплохие результаты в самых разнообразных задачах. Главным их минусом считается то, что они не создают вообще никаких моделей, обобщающих предыдущий опыт, - в выборе решения они основываются на всем массиве доступных исторических данных, поэтому трудно выделить факторы, обуславливающие принятие решений. Также существуют проблемы с выбором меры «близости».