
- •Интеллектуальные информационные системы учебное пособие
- •Тула 2010
- •3. Экспертные системы 47
- •8. Системы с интеллектуальным интерфейсом 143
- •9. Многоагентные системы 158
- •Предисловие
- •1. Искусственный интеллект и интеллектуальные информационные системы
- •1.1. Введение в искусственный интеллект
- •1.1.1. Искусственный интеллект: основные понятия и решаемые задачи
- •1.1.2. Подходы к построению систем искусственного интеллекта
- •1.1.3. Интеллектуальные информационные системы: понятие и отличительные особенности
- •1.2. Основные классы интеллектуальных информационных систем
- •1.2.1. Экспертные системы
- •1.2.2. Самообучающиеся системы
- •1.2.3. Адаптивные информационные системы
- •1.2.4. Системы с интеллектуальным интерфейсом
- •1.2.5. Многоагентные системы
- •1.3. Основы проектирования интеллектуальных информационных систем
- •1.3.1. Структура и этапы разработки интеллектуальных информационных систем
- •1.3.2. Логическое проектирование
- •1.3.3. Физическое проектирование
- •1.3.4. Использование прототипного проектирования
- •Контрольные тесты
- •2. Традиционные способы представления и обработки знаний в интеллектуальных информационных системах
- •2.1. Знания и их использование в интеллектуальных информационных системах
- •2.1.1. Понятие знаний и их отличие от данных
- •2.1.2. Классификация знаний
- •2.1.3. Логический вывод. Использование дедукции, индукции и аналогии
- •2.1.4. Представление знаний в интеллектуальных информационных системах
- •2.2. Типичные модели представления знаний
- •2.2.1. Логическая модель
- •2.2.2. Продукционная модель
- •2.2.3. Семантическая сеть
- •2.2.4. Фреймовая модель
- •2.2.5. Объектно-ориентированная модель
- •2.3. Представление и формализация нечетких знаний
- •2.3.1. Основные определения нечетких множеств
- •2.3.2. Операции с нечеткими множествами
- •2.3.3. Нечеткие отношения
- •2.3.4. Нечеткая и лингвистическая переменные
- •Контрольные тесты
- •3. Экспертные системы
- •3.1. Структура и режимы работы экспертных систем
- •3.1.1. Основные элементы экспертных систем
- •3.1.2. Режимы работы экспертных систем
- •3.1.3. Участники разработки экспертных систем
- •3.2. Классификация экспертных систем
- •3.2.1. Классификация по сложности решаемых задач
- •3.2.2. Классификация по типу решаемых задач
- •3.2.3. Основные классы экспертных систем: классифицирующие, доопределяющие, трансформирующие, многоагентные
- •3.3. Поиск решений в экспертных системах
- •3.3.1. Поиск в одном пространстве
- •3.3.2. Поиск в иерархии пространств
- •3.3.3. Поиск в случае недетерминированности знаний
- •3.3.4. Алгоритм реализации логического вывода в экспертных системах
- •3.4. Методы извлечения знаний в экспертных системах
- •3.4.1. Классификация методов извлечения знаний
- •3.4.2. Коммуникативные методы извлечения знаний
- •3.4.3. Текстологические методы извлечения знаний
- •Контрольные тесты
- •4. Оlap-технология
- •4.1. Основные понятия
- •4.1.1. Хранилище данных
- •4.1.2. Применение информационных хранилищ. Извлечение знаний из данных
- •4.1.3. Основная идея olap-технологии
- •12 Признаков olap данных
- •4.1.4. Структура хранилища данных в оlap-системах
- •4.2. Модели и алгоритмы построения olap-систем
- •4.2.1. Rolap – обработка на основе запросов к реляционным базам данных
- •4.2.2. Molap – многомерное представление данных
- •4.2.3. Holap – гибридные системы
- •Контрольные тесты
- •5. Интеллектуальный анализ данных
- •5.1. Методы интеллектуального анализа данных
- •5.1.1. Основные понятия
- •5.1.2. Типы закономерностей, выявляемых методами интеллектуального анализа данных
- •5.1.3. Стадии интеллектуального анализа данных
- •5.1.4. Индуктивное и абдуктивное обучение
- •5.2. Алгоритмы интеллектуального анализа данных
- •5.2.2. Байесовская классификация
- •5.2.3. Деревья решений
- •5.2.4. Методы классификации с использованием функций
- •5.2.5. Метод "ближайшего соседа" или системы рассуждений на основе аналогичных случаев
- •5.2.6. Методы кластерного анализа
- •5.2.7. Развитие алгоритмов интеллектуального анализа данных
- •Контрольные тесты
- •6. Нейронные сети
- •6.1. Основные понятия
- •6.1.1. Модель искусственного нейрона
- •6.1.2. Модели нейронных сетей
- •6.1.3. Статические нейронные сети
- •6.1.4. Рекуррентные нейронные сети
- •6.2. Проектирование нейронных сетей
- •6.2.1. Этапы проектирования нейронных сетей
- •6.2.2. Метод обратного распространения ошибки
- •6.2.3. Методы обучения нейронных сетей: обучение без учителя
- •6.2.4. Нейронные сети Хопфилда и Хэмминга
- •6.2.5. Использование генетических алгоритмов для обучения нейронной сети
- •Контрольные тесты
- •5. Адаптивные системы
- •5.1. Основные классы адаптивных систем
- •5.1.1. Понятие и классификация адаптивных систем
- •5.1.2. Самонастраивающиеся адаптивные системы
- •5.1.3. Самоорганизующиеся адаптивные системы
- •5.1.4. Самообучающиеся адаптивные системы
- •5.2. Проектирование адаптивных систем
- •5.2.1. Общие подходы и требования к проектированию
- •5.2.2. Оригинальное проектирование адаптивных систем
- •5.2.3. Компонентное проектирование адаптивных систем
- •Контрольные тесты
- •8. Системы с интеллектуальным интерфейсом
- •8.1. Взаимодействие пользователя с информационной системой на естественном языке
- •8.1.1. Компьютерно-лингвистический подход к диалогу. Проблемы формализации естественном языке
- •8.1.2. Задачи обработки текстов на естественном языке
- •8.1.3. Уровни понимания текста на естественном языке
- •8.2. Построение естественно-языковых интерфейсов
- •8.2.1. Лингвистическая трансляция
- •8.2.2. Обобщенная схема естественно-языковой системы
- •8.2.3. Компонент понимания высказываний
- •8.2.4. Компонент генерации высказываний
- •8.3. Прикладные системы с интеллектуальным интерфейсом
- •8.3.1. Интеллектуальные базы данных
- •8.3.2. Интеллектуальные гипертекстовые системы
- •8.3.3. Системы когнитивной графики
- •Контрольные тесты
- •9. Многоагентные системы
- •9.1. Характеристика агента как элемента многоагентной системы
- •9.1.1. Агент: понятие и классификация
- •9.1.2. Отличительные свойства агента
- •9.2. Процесс самоорганизации в многоагентных системах
- •9.2.1. Понятие многоагентной системы
- •9.2.2. Структура памяти и принципы мышление агента
- •9.2.3. Самоорганизация многоагентной системы
- •9.2.4. Архитектура и интерфейс многоагентной системы
- •Контрольные тесты
- •Библиографический список
- •Приложение
- •Интеллектуальные информационные системы
- •3000600, Г.Тула, пр.Ленина, 92.
- •3000600, Г.Тула, ул.Болдина, 151
3.1.2. Режимы работы экспертных систем
Экспертная система работает в двух режимах: приобретения знаний и решения задач (режим консультации или режим использования ЭС).
В режиме приобретения знании общение с ЭС осуществляет эксперт через посредничество инженера по знаниям. Эксперт описывает проблемную область в виде совокупности данных и правил. Данные определяют объекты, их характеристики и значения, существующие в области экспертизы. Правила определяют способы манипулирования данными, характерные для рассматриваемой проблемной области. Эксперт, используя компонент приобретения знаний, наполняет систему знаниями, которые позволяют ЭС в режиме решения самостоятельно (без эксперта) решать задачи из проблемной области.
Отметим, что режиму приобретения знаний при традиционном подходе к разработке программ соответствуют этапы алгоритмизации, программирования и отладки, выполняемые программистом. Таким образом, в отличие от традиционного подхода разработку программ осуществляет эксперт (с помощью ЭС), не владеющий программированием, а не программист.
В режиме консультации общение с ЭС осуществляет конечный пользователь, которого интересует результат и (или) способ получения решения.
После обработки данные поступают в РП. На основе входных данных из РП, общих данных о проблемной области и правил из БЗ решатель (интерпретатор) формирует решение задачи.
В отличие от традиционных программ ЭС в режиме решения задачи не только исполняет предписанную последовательность операций, но и предварительно формирует ее. Если ответ ЭС не понятен пользователю, то он может потребовать объяснения, как ответ получен. Для этого предназначена объяснительная компонента.
3.1.3. Участники разработки экспертных систем
В разработке ЭС участвуют представители следующих специальностей: эксперт в той проблемной области, задачи которой будет решать ЭС; инженер по знаниям - специалист по разработке ЭС; программист - специалист по разработке инструментальных средств. Необходимо отметить, что отсутствие среди участников разработки инженера по знаниям (т. е. его замена программистом) либо приводит к неудаче процесс создания ЭС, либо значительно удлиняет его.
Эксперт определяет знания, характеризующие проблемную область, обеспечивает полноту и правильность введенных в ЭС знаний.
Инженер по знаниям помогает эксперту выявить и структурировать знания, необходимые для работы ЭС, осуществляет выбор того инструментального средства, которое наиболее подходит для данной проблемной области, и определяет способ представления знаний в этом инструментальном средстве, выделяет и программирует (традиционными средствами) стандартные функции (типичные для данной проблемной области) которые будут использоваться в правилах, вводимых экспертом.
Рис. 3.2. Процесс построения ЭС
Программист разрабатывает программу, содержащую все основные компоненты ЭС, осуществляет сопряжение ее с той средой, в которой она будет использована.
Итак, обычно в разработке ЭС участвуют не менее трех-четырех человек — один эксперт, один или два инженера по знаниям и один программист, привлекаемый для модификации и согласования инструментальных средств. Также к процессу разработки ЭС могут по мере необходимости привлекаться и другие участники. Например, инженер по знаниям может пригласить других экспертов, чтобы убедиться в правильности своего понимания основного эксперта, представительности тестов, демонстрирующих особенности рассматриваемой задачи, совпадения взглядов различных экспертов на качество предлагаемых решений. Кроме того, для сложных систем считается целесообразным привлекать к основному циклу разработки несколько экспертов. Однако в этом случае, как правило, требуется, чтобы один из экспертов отвечал за непротиворечивость знаний, сообщаемых коллективом экспертов.