
- •Интеллектуальные информационные системы учебное пособие
- •Тула 2010
- •3. Экспертные системы 47
- •8. Системы с интеллектуальным интерфейсом 143
- •9. Многоагентные системы 158
- •Предисловие
- •1. Искусственный интеллект и интеллектуальные информационные системы
- •1.1. Введение в искусственный интеллект
- •1.1.1. Искусственный интеллект: основные понятия и решаемые задачи
- •1.1.2. Подходы к построению систем искусственного интеллекта
- •1.1.3. Интеллектуальные информационные системы: понятие и отличительные особенности
- •1.2. Основные классы интеллектуальных информационных систем
- •1.2.1. Экспертные системы
- •1.2.2. Самообучающиеся системы
- •1.2.3. Адаптивные информационные системы
- •1.2.4. Системы с интеллектуальным интерфейсом
- •1.2.5. Многоагентные системы
- •1.3. Основы проектирования интеллектуальных информационных систем
- •1.3.1. Структура и этапы разработки интеллектуальных информационных систем
- •1.3.2. Логическое проектирование
- •1.3.3. Физическое проектирование
- •1.3.4. Использование прототипного проектирования
- •Контрольные тесты
- •2. Традиционные способы представления и обработки знаний в интеллектуальных информационных системах
- •2.1. Знания и их использование в интеллектуальных информационных системах
- •2.1.1. Понятие знаний и их отличие от данных
- •2.1.2. Классификация знаний
- •2.1.3. Логический вывод. Использование дедукции, индукции и аналогии
- •2.1.4. Представление знаний в интеллектуальных информационных системах
- •2.2. Типичные модели представления знаний
- •2.2.1. Логическая модель
- •2.2.2. Продукционная модель
- •2.2.3. Семантическая сеть
- •2.2.4. Фреймовая модель
- •2.2.5. Объектно-ориентированная модель
- •2.3. Представление и формализация нечетких знаний
- •2.3.1. Основные определения нечетких множеств
- •2.3.2. Операции с нечеткими множествами
- •2.3.3. Нечеткие отношения
- •2.3.4. Нечеткая и лингвистическая переменные
- •Контрольные тесты
- •3. Экспертные системы
- •3.1. Структура и режимы работы экспертных систем
- •3.1.1. Основные элементы экспертных систем
- •3.1.2. Режимы работы экспертных систем
- •3.1.3. Участники разработки экспертных систем
- •3.2. Классификация экспертных систем
- •3.2.1. Классификация по сложности решаемых задач
- •3.2.2. Классификация по типу решаемых задач
- •3.2.3. Основные классы экспертных систем: классифицирующие, доопределяющие, трансформирующие, многоагентные
- •3.3. Поиск решений в экспертных системах
- •3.3.1. Поиск в одном пространстве
- •3.3.2. Поиск в иерархии пространств
- •3.3.3. Поиск в случае недетерминированности знаний
- •3.3.4. Алгоритм реализации логического вывода в экспертных системах
- •3.4. Методы извлечения знаний в экспертных системах
- •3.4.1. Классификация методов извлечения знаний
- •3.4.2. Коммуникативные методы извлечения знаний
- •3.4.3. Текстологические методы извлечения знаний
- •Контрольные тесты
- •4. Оlap-технология
- •4.1. Основные понятия
- •4.1.1. Хранилище данных
- •4.1.2. Применение информационных хранилищ. Извлечение знаний из данных
- •4.1.3. Основная идея olap-технологии
- •12 Признаков olap данных
- •4.1.4. Структура хранилища данных в оlap-системах
- •4.2. Модели и алгоритмы построения olap-систем
- •4.2.1. Rolap – обработка на основе запросов к реляционным базам данных
- •4.2.2. Molap – многомерное представление данных
- •4.2.3. Holap – гибридные системы
- •Контрольные тесты
- •5. Интеллектуальный анализ данных
- •5.1. Методы интеллектуального анализа данных
- •5.1.1. Основные понятия
- •5.1.2. Типы закономерностей, выявляемых методами интеллектуального анализа данных
- •5.1.3. Стадии интеллектуального анализа данных
- •5.1.4. Индуктивное и абдуктивное обучение
- •5.2. Алгоритмы интеллектуального анализа данных
- •5.2.2. Байесовская классификация
- •5.2.3. Деревья решений
- •5.2.4. Методы классификации с использованием функций
- •5.2.5. Метод "ближайшего соседа" или системы рассуждений на основе аналогичных случаев
- •5.2.6. Методы кластерного анализа
- •5.2.7. Развитие алгоритмов интеллектуального анализа данных
- •Контрольные тесты
- •6. Нейронные сети
- •6.1. Основные понятия
- •6.1.1. Модель искусственного нейрона
- •6.1.2. Модели нейронных сетей
- •6.1.3. Статические нейронные сети
- •6.1.4. Рекуррентные нейронные сети
- •6.2. Проектирование нейронных сетей
- •6.2.1. Этапы проектирования нейронных сетей
- •6.2.2. Метод обратного распространения ошибки
- •6.2.3. Методы обучения нейронных сетей: обучение без учителя
- •6.2.4. Нейронные сети Хопфилда и Хэмминга
- •6.2.5. Использование генетических алгоритмов для обучения нейронной сети
- •Контрольные тесты
- •5. Адаптивные системы
- •5.1. Основные классы адаптивных систем
- •5.1.1. Понятие и классификация адаптивных систем
- •5.1.2. Самонастраивающиеся адаптивные системы
- •5.1.3. Самоорганизующиеся адаптивные системы
- •5.1.4. Самообучающиеся адаптивные системы
- •5.2. Проектирование адаптивных систем
- •5.2.1. Общие подходы и требования к проектированию
- •5.2.2. Оригинальное проектирование адаптивных систем
- •5.2.3. Компонентное проектирование адаптивных систем
- •Контрольные тесты
- •8. Системы с интеллектуальным интерфейсом
- •8.1. Взаимодействие пользователя с информационной системой на естественном языке
- •8.1.1. Компьютерно-лингвистический подход к диалогу. Проблемы формализации естественном языке
- •8.1.2. Задачи обработки текстов на естественном языке
- •8.1.3. Уровни понимания текста на естественном языке
- •8.2. Построение естественно-языковых интерфейсов
- •8.2.1. Лингвистическая трансляция
- •8.2.2. Обобщенная схема естественно-языковой системы
- •8.2.3. Компонент понимания высказываний
- •8.2.4. Компонент генерации высказываний
- •8.3. Прикладные системы с интеллектуальным интерфейсом
- •8.3.1. Интеллектуальные базы данных
- •8.3.2. Интеллектуальные гипертекстовые системы
- •8.3.3. Системы когнитивной графики
- •Контрольные тесты
- •9. Многоагентные системы
- •9.1. Характеристика агента как элемента многоагентной системы
- •9.1.1. Агент: понятие и классификация
- •9.1.2. Отличительные свойства агента
- •9.2. Процесс самоорганизации в многоагентных системах
- •9.2.1. Понятие многоагентной системы
- •9.2.2. Структура памяти и принципы мышление агента
- •9.2.3. Самоорганизация многоагентной системы
- •9.2.4. Архитектура и интерфейс многоагентной системы
- •Контрольные тесты
- •Библиографический список
- •Приложение
- •Интеллектуальные информационные системы
- •3000600, Г.Тула, пр.Ленина, 92.
- •3000600, Г.Тула, ул.Болдина, 151
2.1.4. Представление знаний в интеллектуальных информационных системах
Знания в ИИС представляются в виде базы знаний - совокупности единиц знаний, которые представляют собой формализованное с помощью некоторого метода представления знаний отражение объектов проблемной области и их взаимосвязей, действий над объектами и, возможно, неопределенностей, с которыми эти действия осуществляются.
Классификация методов представления знаний может осуществляться по соотношению структурированности и операционности (рис. 2.2). Объектные методы представления знаний в большей степени ориентированы на представление структуры фактуального знания, а правила - операционного.
Логическая модель реализует и объекты, и правила с помощью предикатов первого порядка, является строго формализованной моделью с универсальным дедуктивным монотонным методом логического вывода.
Продукционная модель позволяет осуществлять эвристические методы вывода на правилах и может обрабатывать неопределенности в виде условных вероятностей или коэффициентов уверенности, а также выполнять монотонный или немонотонный вывод.
Семантическая сеть отображает разнообразные отношения сущностей проблемной области.
Фреймовая модель, как развитие семантической сети, использует для реализации операционного знания присоединенные процедуры.
Объектно-ориентированная модель, как развитие фреймовой модели, реализуя обмен сообщениями между объектами, в большей степени ориентирована на решение динамических задач и отражение поведенческой модели.
2.2. Типичные модели представления знаний
2.2.1. Логическая модель
Классическим механизмом представления знаний в системах является исчисление предикатов (использовалось уже в 50-х годах в исследованиях по искусственному интеллекту).
Логическая модель предполагает унифицированное описание объектов и действий в виде предикатов первого порядка. Под предикатом понимается логическая функция на N-аргументах (признаках), которая принимает истинное или ложное значение в зависимости от значений аргументов. Область определения предиката задается в виде фактов, действия описываются как правила, определяющие логическую формулу вывода фактов из других фактов.
Механизм вывода осуществляет дедуктивный перебор фактов, относящихся к правилу по принципу "сверху-вниз", "слева-направо" или обратный вывод методом поиска в глубину. Правила могут связываться в цепочки в результате использования одинакового предиката в посылке одного и в заключении другого правила.
Для логической модели характерна строгость формального аппарата получения решения. Однако полный последовательный перебор всех возможных решений может приводить к комбинаторным взрывам, в результате чего поставленные задачи могут решаться недопустимо большое время. Кроме того, работа с неопределенностями знаний должна быть запрограммирована в виде самостоятельных метаправил, что на практике затрудняет разработку баз знаний с помощью логического формализма.
2.2.2. Продукционная модель
Продукционные модели в последнее время широко используются в системах представления знаний. Первоначально предложенные Постом в 1943 г., они были впервые применены в 1972 г. Продукционные модели могут быть реализованы как процедурно, так и декларативно. Их простота и строгая форма послужили основой ряда интересных свойств, что сделало их удобным средством представления знаний.
Продукционные модели используются для решения сложных задач, которые основаны на применении эвристических методов представления знаний, позволяющих настраивать механизм вывода на особенности проблемной области и учитывать неопределенность знаний.
Продукционные модели — это набор, правил вида «условия (антецедент) — действие (консеквент)», где условиями являются утверждения о содержимом некой базы данных, а действия представляют собой процедуры, которые могут изменять содержимое БД.
Продукционная модель предполагает более гибкую организацию работы механизма вывода по сравнению с логической моделью. Так, в зависимости от направления вывода возможна как прямая аргументация, управляемая данными (от данных к цели), так и обратная, управляемая целями (от целей к данным). Прямой вывод используется в продукционных моделях при решении, например, задач интерпретации, когда по исходным данным нужно определить сущность некоторой ситуации или в задачах прогнозирования, когда из описания некоторой ситуации требуется вывести все следствия. Обратный вывод применяется, когда нужно проверить определенную гипотезу или небольшое множество гипотез на соответствие фактам, например, в задачах диагностики.
В общем виде под продукцией понимается выражение следующего вида:
Здесь i—имя продукции, с помощью которого данная продукция выделяется из всего множества продукций. Элемент Q характеризует сферу применения продукции. Такие сферы легко выделяются в когнитивных структурах человека. Разделение знаний на отдельные сферы позволяет экономить время на поиск нужных знаний. Элемент Р есть условие применимости ядра продукции. Обычно Р представляет собой логическое выражение (как правило, предикат). Когда Р принимает значение «истина», ядро продукции активизируется. Если Р ложно, то ядро продукции не может быть использовано. Основным элементом продукции является ее ядро: А=>В. Интерпретация ядра продукции может быть различной и зависит oт того, что стоит слева и справа от знака секвенции. Секвенция может истолковываться в обычном логическом смысле как знак логического следования В из истинного А (если А не является истинным выражением, то о В ничего сказать нельзя). Возможны и другие интерпретации ядра продукции, например А описывает некоторое условие, необходимое для того, чтобы можно было совершить действие В. Элемент N описывает постусловия продукции Они актуализируются только в том случае, если ядро продукции реализовалось. Постусловия продукции описывают действия и процедуры, которые необходимо выполнить после реализации В. Выполнение N может происходить не сразу после реализации ядра продукции.
Для обработки неопределенностей знаний продукционная модель использует, как правило, либо методы обработки условных вероятностей Байеса, либо методы нечеткой логики Заде.
Байесовский подход предполагает начальное априорное задание предполагаемых гипотез (значений достигаемых целей), которые последовательно уточняются с учетом вероятностей свидетельств в пользу или против гипотез, в результате чего формируются апостериорные вероятности:
,
,
где
- априорная вероятность гипотезы Н;
- априорная вероятность отрицания
гипотезы Н;
- априорная вероятность свидетельства
Е;
- апостериорная (условная) вероятность
гипотезы Н при условии, что имеет место
свидетельство Е;
- апостериорная (условная) вероятность
отрицания гипотезы Н при условии, что
имеет место свидетельство Е;
- вероятность свидетельства гипотезы
Е при подтверждении гипотезы Н;
- вероятность свидетельства гипотезы
Е при отрицании гипотезы Н.
Найдем отношения левых и правых частей представленных уравнений:
где
- априорные шансы гипотезы Н, отражающие
отношение числа позитивных проявлений
гипотезы к числу негативных;
-
апостериорные шансы гипотезы Н при
условии наличия свидетельства Е;
- фактор достаточности, отражающий
степень воздействия на шансы гипотезы
при наличии свидетельства Е.
Аналогично выводится зависимость:
где
- апостериорные шансы гипотезы Н при
условии отсутствия свидетельства Е;
- фактор необходимости, отражающий
степень воздействия на шансы гипотезы
при отсутствии свидетельства Е.
Шансы и вероятности связаны уравнениями:
Отсюда апостериорная вероятность гипотезы рассчитывается через апостериорные шансы, которые в свою очередь получаются перемножением априорных шансов на факторы достаточности или необходимости всех относящихся к гипотезе свидетельств в зависимости от их подтверждения или отрицания со стороны пользователя. Свидетельства рассматриваются как независимые аргументы на дереве целей.
Для байесовского подхода к построению продукционной базы знаний характерна большая трудоемкость статистического оценивания априорных шансов и факторов достаточности и необходимости.
Подход на основе нечеткой логики является более простым, но менее точным методом оценки достоверности используемых знаний. Вероятности заменяются на экспертные оценки определенности фактов и применения правил (факторы уверенности). Факторы уверенности могут рассматриваться и как весовые коэффициенты, отражающие степень важности аргументов в процессе вывода заключений. Итоговые факторы уверенности получаемых решений главным образом отражают порядок достоверности результата, а не его точность, что вполне приемлемо во многих задачах.
Факторы уверенности измеряются по некоторой относительной шкале, например, от 0 до 100. В отличие от теории вероятностей сумма факторов уверенностей некоторых альтернативных значений необязательно составляет 100. Предполагается, что оценка факторов уверенностей исходных данных задается пользователем при описании конкретной ситуации, а факторы уверенности применения правил определяются инженерами знаний совместно с экспертами при наполнении базы знаний.
При объединении факторов уверенности конъюнктивно или дизъюнктивно связанных аргументов используются следующие формулы:
Конъюнкция (А и В):
Дизъюнкция (А или В):
.
Объединение факторов уверенности в посылках правил осуществляется чаще всего, по формулам "min/max", а левых и правых частей правил и одинаковых результатов нескольких правил соответственно по формулам "произведение" и "сумма".
Выбор различных подходов к определению суммарных факторов уверенности определяется подходами к построению правил продукции, отражающих влияние значений определяющих факторов на целевую переменную.
Рейтинговый метод (дизъюнктивный подход). Наиболее зарекомендовавшим себя методом анализа, интегрирующим множество различных показателей, служит рейтинговый метод, который формирует "снизу-вверх" (в соответствии с построенной функциональной моделью) интегральную оценку исследуемого явления. Правила базы знаний оценивают отдельные факторы, реализуя так называемый дизъюнктивный (независимый) подход к построению правил. В качестве весов в данном подходе используются факторы уверенности, которые отражают влияние подцели на исследуемую целевую переменную. Для оценки фактора уверенности целевой переменой применяется формула дизъюнктивного объединения факторов уверенности, отражающая суммарное влияние на нее различных значений подфакторов.
Метод классификации ситуаций (конъюнктивный подход). В качестве метода построения правил продукции может применяться также метод классификации ситуаций, когда по множеству признаков классификации последовательно строится дерево решений, отражающее эту классификацию. Деревья решений – это способ представления правил в иерархической, последовательной структуре, где каждому объекту соответствует единственный узел, дающий решение. В случае индуктивного вывода дерево решений строится по обучающей выборке автоматически. По различным ветвям дерева решений может наблюдаться различная последовательность классификации. Для каждой отдельной ветки дерева решения строится правило, в котором все признаки классификации последовательно связываются в конъюнкцию факторов левой части правила. Ограничения метода классификации ситуаций (конъюнктивного подхода) по сравнению с рейтинговым методом (дизъюнктивным подходом) при использовании правил принятия решений связаны с необходимостью жесткого задания всех признаков классификации по соответствующему пути дерева решения. Отсутствие хотя бы одного из признаков может привести к неудаче логического вывода.
Метод декомпозиции. В основе лежит метод последовательной декомпозиции "сверху - вниз" или дезагрегации "целое - часть", когда проблема последовательно разбивается на подпроблемы, пока на каком-либо уровне не станет ясным, какая подпроблема в действительности имеет место.
Общим недостатком всех формализмов представления знаний, основанных на правилах, является недостаточно глубокое отражение семантики проблемной области, что может сказываться на гибкости формулирования запросов пользователей к экспертным системам. Этот недостаток снимается в объектных методах представления знаний.