
- •Интеллектуальные информационные системы учебное пособие
- •Тула 2010
- •3. Экспертные системы 47
- •8. Системы с интеллектуальным интерфейсом 143
- •9. Многоагентные системы 158
- •Предисловие
- •1. Искусственный интеллект и интеллектуальные информационные системы
- •1.1. Введение в искусственный интеллект
- •1.1.1. Искусственный интеллект: основные понятия и решаемые задачи
- •1.1.2. Подходы к построению систем искусственного интеллекта
- •1.1.3. Интеллектуальные информационные системы: понятие и отличительные особенности
- •1.2. Основные классы интеллектуальных информационных систем
- •1.2.1. Экспертные системы
- •1.2.2. Самообучающиеся системы
- •1.2.3. Адаптивные информационные системы
- •1.2.4. Системы с интеллектуальным интерфейсом
- •1.2.5. Многоагентные системы
- •1.3. Основы проектирования интеллектуальных информационных систем
- •1.3.1. Структура и этапы разработки интеллектуальных информационных систем
- •1.3.2. Логическое проектирование
- •1.3.3. Физическое проектирование
- •1.3.4. Использование прототипного проектирования
- •Контрольные тесты
- •2. Традиционные способы представления и обработки знаний в интеллектуальных информационных системах
- •2.1. Знания и их использование в интеллектуальных информационных системах
- •2.1.1. Понятие знаний и их отличие от данных
- •2.1.2. Классификация знаний
- •2.1.3. Логический вывод. Использование дедукции, индукции и аналогии
- •2.1.4. Представление знаний в интеллектуальных информационных системах
- •2.2. Типичные модели представления знаний
- •2.2.1. Логическая модель
- •2.2.2. Продукционная модель
- •2.2.3. Семантическая сеть
- •2.2.4. Фреймовая модель
- •2.2.5. Объектно-ориентированная модель
- •2.3. Представление и формализация нечетких знаний
- •2.3.1. Основные определения нечетких множеств
- •2.3.2. Операции с нечеткими множествами
- •2.3.3. Нечеткие отношения
- •2.3.4. Нечеткая и лингвистическая переменные
- •Контрольные тесты
- •3. Экспертные системы
- •3.1. Структура и режимы работы экспертных систем
- •3.1.1. Основные элементы экспертных систем
- •3.1.2. Режимы работы экспертных систем
- •3.1.3. Участники разработки экспертных систем
- •3.2. Классификация экспертных систем
- •3.2.1. Классификация по сложности решаемых задач
- •3.2.2. Классификация по типу решаемых задач
- •3.2.3. Основные классы экспертных систем: классифицирующие, доопределяющие, трансформирующие, многоагентные
- •3.3. Поиск решений в экспертных системах
- •3.3.1. Поиск в одном пространстве
- •3.3.2. Поиск в иерархии пространств
- •3.3.3. Поиск в случае недетерминированности знаний
- •3.3.4. Алгоритм реализации логического вывода в экспертных системах
- •3.4. Методы извлечения знаний в экспертных системах
- •3.4.1. Классификация методов извлечения знаний
- •3.4.2. Коммуникативные методы извлечения знаний
- •3.4.3. Текстологические методы извлечения знаний
- •Контрольные тесты
- •4. Оlap-технология
- •4.1. Основные понятия
- •4.1.1. Хранилище данных
- •4.1.2. Применение информационных хранилищ. Извлечение знаний из данных
- •4.1.3. Основная идея olap-технологии
- •12 Признаков olap данных
- •4.1.4. Структура хранилища данных в оlap-системах
- •4.2. Модели и алгоритмы построения olap-систем
- •4.2.1. Rolap – обработка на основе запросов к реляционным базам данных
- •4.2.2. Molap – многомерное представление данных
- •4.2.3. Holap – гибридные системы
- •Контрольные тесты
- •5. Интеллектуальный анализ данных
- •5.1. Методы интеллектуального анализа данных
- •5.1.1. Основные понятия
- •5.1.2. Типы закономерностей, выявляемых методами интеллектуального анализа данных
- •5.1.3. Стадии интеллектуального анализа данных
- •5.1.4. Индуктивное и абдуктивное обучение
- •5.2. Алгоритмы интеллектуального анализа данных
- •5.2.2. Байесовская классификация
- •5.2.3. Деревья решений
- •5.2.4. Методы классификации с использованием функций
- •5.2.5. Метод "ближайшего соседа" или системы рассуждений на основе аналогичных случаев
- •5.2.6. Методы кластерного анализа
- •5.2.7. Развитие алгоритмов интеллектуального анализа данных
- •Контрольные тесты
- •6. Нейронные сети
- •6.1. Основные понятия
- •6.1.1. Модель искусственного нейрона
- •6.1.2. Модели нейронных сетей
- •6.1.3. Статические нейронные сети
- •6.1.4. Рекуррентные нейронные сети
- •6.2. Проектирование нейронных сетей
- •6.2.1. Этапы проектирования нейронных сетей
- •6.2.2. Метод обратного распространения ошибки
- •6.2.3. Методы обучения нейронных сетей: обучение без учителя
- •6.2.4. Нейронные сети Хопфилда и Хэмминга
- •6.2.5. Использование генетических алгоритмов для обучения нейронной сети
- •Контрольные тесты
- •5. Адаптивные системы
- •5.1. Основные классы адаптивных систем
- •5.1.1. Понятие и классификация адаптивных систем
- •5.1.2. Самонастраивающиеся адаптивные системы
- •5.1.3. Самоорганизующиеся адаптивные системы
- •5.1.4. Самообучающиеся адаптивные системы
- •5.2. Проектирование адаптивных систем
- •5.2.1. Общие подходы и требования к проектированию
- •5.2.2. Оригинальное проектирование адаптивных систем
- •5.2.3. Компонентное проектирование адаптивных систем
- •Контрольные тесты
- •8. Системы с интеллектуальным интерфейсом
- •8.1. Взаимодействие пользователя с информационной системой на естественном языке
- •8.1.1. Компьютерно-лингвистический подход к диалогу. Проблемы формализации естественном языке
- •8.1.2. Задачи обработки текстов на естественном языке
- •8.1.3. Уровни понимания текста на естественном языке
- •8.2. Построение естественно-языковых интерфейсов
- •8.2.1. Лингвистическая трансляция
- •8.2.2. Обобщенная схема естественно-языковой системы
- •8.2.3. Компонент понимания высказываний
- •8.2.4. Компонент генерации высказываний
- •8.3. Прикладные системы с интеллектуальным интерфейсом
- •8.3.1. Интеллектуальные базы данных
- •8.3.2. Интеллектуальные гипертекстовые системы
- •8.3.3. Системы когнитивной графики
- •Контрольные тесты
- •9. Многоагентные системы
- •9.1. Характеристика агента как элемента многоагентной системы
- •9.1.1. Агент: понятие и классификация
- •9.1.2. Отличительные свойства агента
- •9.2. Процесс самоорганизации в многоагентных системах
- •9.2.1. Понятие многоагентной системы
- •9.2.2. Структура памяти и принципы мышление агента
- •9.2.3. Самоорганизация многоагентной системы
- •9.2.4. Архитектура и интерфейс многоагентной системы
- •Контрольные тесты
- •Библиографический список
- •Приложение
- •Интеллектуальные информационные системы
- •3000600, Г.Тула, пр.Ленина, 92.
- •3000600, Г.Тула, ул.Болдина, 151
2.1.2. Классификация знаний
В ИИС могут использоваться различные знания. Существует множество классификаций знаний. С помощью классификаций, как правило, систематизируют знания конкретных проблемных областей (ПО). Основные виды знаний представлены в табл. 2.1.
Таблица 2.1
Классификация знаний
Основание классификации |
Виды знаний |
Описание |
по способу приобретения знаний (с точки зрения решения задач в ПО) |
факты |
хорошо известные в данной предметной области обстоятельства |
эвристики |
основывается на собственном опыте специалиста в данной предметной области - эксперта, накопленном в результате многолетней практики |
|
По типу представления знания |
процедурные |
описания действий, которые возможны при манипулировании фактами и явлениями для достижения намеченных целей |
декларативные |
описания фактов и явлений, включая описание основных связей и закономерностей предметной области |
|
По природе знаний |
фактуальные |
осмысленные и понятные данные. Знания типа «А – это А». |
операционные |
общие зависимости между фактами, которые позволяют интерпретировать данные или извлекать из них информацию. Знания типа «Если А то В». |
|
По степени определенности |
детерминированные |
четко определенные знания |
неопределенные |
знания неполные (отсутствие), недостоверные (неточность измерения), двусмысленные (многозначность понятий), нечеткие (качественная оценка вместо количественной) |
|
По уровню представления знаний как семиотической (знаковой) системы |
синтаксические |
характеризуют синтаксическую структуру объекта или явления, которая не зависит от смысла и содержания используемых при этом понятий |
семантические |
содержат информацию, непосредственно связанную со значениями и смыслом описываемых явлений и объектов |
|
прагматические |
описывают объекты и явления с точки зрения решаемой задачи с учетом действующих в ней специфических критериев |
Помимо перечисленных видов, существуют так называемые метазнания (знания о знаниях). Понятие «метазнания» указывает на знания, касающиеся способов использования знаний и свойств знаний. Это понятие необходимо для эффективного управления базой знаний.
2.1.3. Логический вывод. Использование дедукции, индукции и аналогии
Одной из отличительных особенностей знаний является возможность осуществления на них логического вывода, т.е. вывода новых знаний. Логический вывод – это обобщенная процедура поиска решения задачи, которая на основе базы знаний и в соответствии с информационной потребностью пользователя строит цепочку рассуждений (логически связанных единиц знаний), приводящую к конкретному результату. Основные виды логического вывода представлены на рис. 2.1.
Дедукция (выведение) – такая форма мышления, когда новая мысль выводится чисто логическим путем (т.е. по законам логики) из предшествующих мыслей. Такая последовательность мыслей называется выводом, а каждый компонент этого вывода является либо ранее доказанной мыслью, либо аксиомой, либо гипотезой. Последняя мысль данного вывода называется заключением.
Индукция (наведение) – это форма мышления, посредством которой мысль наводится на какое-либо общее правило, общее положение, присущее всем единичным предметам какого-либо класса. Индуктивный логический вывод является перспективным направлением инженерии знаний, здесь не рассматривается.
Дедуктивный логический вывод (от общего к частному) – вывод частных утверждений путем подстановки в общие утверждения других известных частных утверждений. Различают прямую (от данных к цели) и обратную (от цели к данным) цепочки рассуждений.
Индуктивный логический вывод (от частного к общему) – вывод (обобщение) общих утверждений на основе множества частных.
Абдуктивный вывод (от частного к частному) – вывод частных утверждений на основе поиска других аналогичных утверждений (вывод по аналогии).
Монотонность логического вывода - свойство, характерное для вывода в базе знаний и состоящее в том, что ранее выведенные утверждения не теряют истинности при расширении множества посылок для вывода. Немонотонность предполагает, что ранее выведенные утверждения могут перестать быть выводимыми при появлении новых фактов.