Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабораторний Практикум (ОЦТ) готово.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
821.76 Кб
Скачать

Івано-Франківський національний технічний

університет нафти і газу

Кафедра інформаційно-вимірювальних технологій

Остапів В.В.

ОСНОВИ ЦИФРОВОЇ ТЕХНІКИ

Лабораторний практикум

Для студентів спеціальності “Метрологія та вимірювальна техніка”

Івано-Франківськ

2009

Лабораторна робота №1

Тема: «Системи числення. Двійкова арифметика».

Мета роботи: навчитися переводити числа з однієї позиційної системи в іншу; проводити арифметичні операції над числами в довільній позиційній системі числення.

1.1 Теоретичні відомості

Система числення - сукупність способів і засобів запису чисел для проведення підрахунків.

Розрізняють такі типи систем числення:

  • позиційні

  • змішані

  • непозиційні

Система числення називається позиційною, якщо під час запису числа одна і таж цифра має різне значення, яке визначається місцем (позицією), на якому вона знаходиться. Основою цієї системи є число десять. Основою системи числення називається число, яке означає, у скільки разів одиниця наступного розрядку більше за одиницю попереднього.

Загальновживана форма запису числа є насправді не що інше, як скорочена форма запису розкладу за степенями основи системи числення, наприклад

130678=1*105+3*104+0*103+6*102+7*101+8

Тут 10 є основою системи числення, а показник степеня - це номер позиції цифри в записі числа (нумерація ведеться зліва на право, починаючи з нуля). Арифметичні операції у позиційних системах числення виконують за правилами, запропонованими ще в середньовіччі. Наприклад, додаючи два багатозначних числа, застосовуємо правило додавання стовпчиком. При цьому все зводиться до додавання однозначних чисел, для яких необхідним є знання таблиці додавання.

Найпоширенішою для подання чисел у пам'яті комп'ютера є двійкова система числення.    Будь-яке число у двійковій системі числення записується у вигляді певної послідовності нулів та одиниць. Додавання однорозрядних двійкових чисел здійснюється за такими правилами:

0+0 = 0; 0+1 = 1+0 =1; 1+1 = 10 (одиниця переноситься в старший розряд).    З урахуванням цих правил арифметичні операції над двійковими числами (додавання, віднімання, множення, ділення) здійснюються аналогічно до звичних десяткових операцій.    Алгоритм переведення чисел з двійкової системи до десяткової безпосередньо спирається на визначення позиційної системи числення. Всі розряди домножуються на відповідні ступені двійки (крайній справа - на 1, наступний - на 2 і т.д.), після чого отримані добутки додаються за правилами десяткової системи.

Оскільки 23=8, а 24=16, то кожних три двійкових розряди зображення числа утворюють один вісімковий, а кожних чотири двійкових розряди - один шістнадцятковий. Тому для скорочення запису адрес та вмісту оперативної пам'яті комп'ютера використовують шістнадцяткову й вісімкову системи числення. В процесі налагодження програм та в деяких інших ситуаціях у програмуванні актуальною є проблема переведення чисел з однієї позиційної системи числення в іншу. Якщо основа нової системи числення дорівнює деякому степеню старої системи числення, то алгоритм переводу дуже простий: потрібно згрупувати справа наліво розряди в кількості, що дорівнює показнику степеня і замінити цю групу розрядів відповідним символом нової системи числення. Цим алгоритмом зручно користуватися коли потрібно перевести число з двійкової системи числення у вісімкову або шістнадцяткову.

Двійкове подання чисел є надто громіздким. Так, ми бачили, що для запису десяткового числа 43 потрібно аж 6 двійкових розрядів. Тому в програмуванні і в комп’ютерній літературі широко використовується шістнадцяткова система числення - позиційна система числення за основою 16. Оскільки 16 = 24, переведення чисел з двійкової системи до шістнадцяткової спрощується: одній шістнадцятковій цифрі відповідає чотири двійкових розряди, причому ця відповідність є взаємно однозначною. Десятковим числам від 0 до 9 відповідають такі самі шістнадцяткові цифри. Дворозрядне десяткове число 10 позначається однією шістнадцятковою цифрою зі значенням A, 11 - B, 12 - C, 13 - D, 14 - E, 15 - F.

Якщо основа однієї системи числення дорівнює деякому степеню іншої, то перевід тривіальний. У протилежному випадкові користуються правилами переведення числа з однієї позиційної системи числення в іншу (найчастіше для переведення із двійкової, вісімкової та шістнадцяткової систем числення у десяткову, і навпаки).

Змішані системи числення

Змішана система числення є узагальненням системи числення з основою b і її часто відносять до позиційних систем числення. Основою змішаної системи є послідовність чисел, що зростає, і кожне число x представляється як лінійна комбінація:

, де на коефіцієнти ak (цифри) накладаються деякі обмеження.

Якщо bk = bk для деякого b, то змішана система співпадає з b-основною системою числення.

Найвідомішим прикладом змішаної системи числення є представлення часу у вигляді кількості діб, годин, хвилин і секунд. При цьому величина d днів h годин m хвилин s секунд відповідає значенню .

Непозиційні системи числення

У непозиційних системах числення вага знака не залежить від його положення по відношенню до інших знаків у числі.

У римській системі числення: I - 1, V - 5, X - 10 і т. д.

В одиничній системі числення число сім представляється сімома одиничками: (7)10 = (1111111)1

Недоліками непозиційних систем числення є:

  • громіздкість зображення чисел;

  • труднощі у виконанні операцій.