Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Введ в хим.doc
Скачиваний:
4
Добавлен:
01.04.2025
Размер:
1.59 Mб
Скачать

4. Валентность

Валентностью элемента называется свойство его атомов соединяться с определенным числом других атомов.

Количественным выражением валентности являются три показателя: стехиометрическая валентность, электронная валентность и координационное число. В этой главе рассмотривается первый показатель – стехиометрическая валентность.

Стехиометрическая валентность показывает, сколько атомов другого элемента присоединяет атом данного элемента. За единицу валентности принята валентность водорода, так как водород всегда одновалентен. Следовательно, валентность элемента – это число атомов водорода, присоединяемых или замещаемых одним атомом этого элемента. Например, в соединениях HCl, H2O, NH3 и CH4 хлор одновалентен, кислород двухвалентен, азот трехвалентен и углерод четырехвалентен.

Но с водородом образуют соединения не все элементы, а с кислородом – почти все. Стехиометрическая валентность кислорода, как правило, равна двум. Следовательно, валентность элемента равна удвоенному числу атомов кислорода, присоединяемых к атому этого элемента. Например, в соединениях Na2O, FeO, Cr2O3, SnO2, V2O5, SeO3 и Mn2O7 натрий одновалентен, железо двухвалентно, хром трехвалентен, олово четырехвалентно, ванадий пятивалентен, селен шестивалентен и марганец семивалентен.

Стехиометрическую валентность принято выражать римскими числами. Например, в соединениях N2O, BaO, Al2O3, CO2, P2O5, SO3, Cl2O7 и XeO4 валентность элементов равна I (N), II (Ba), III (Al), IV (C), V (P), VI (S), VII (Cl) и VIII (Xe).

Химические элементы подразделяются на элементы постоянной валентности и элементы переменой валентности. К элементам постоянной валентности относятся:

– водород, фтор и щелочные металлы (валентность I);

– все элементы второй группы, кроме ртути (валентность II);

– все элементы третей группы, кроме таллия (валентность III).

Остальные элементы – переменной валентности, например, сера (II, IV, VI), азот (I, II, III, IV, V), марганец (II, III, IV, V, VI, VII). Максимальное значение валентности таких элементов обычно равно номеру группы в Периодической системе, в которой они расположены. В Периодической системе имеется восемь групп, поэтому валентности выше восьми не бывает.

Максимальная валентность не равна номеру группы у фтора (группа VII, валентность I), кислорода (группа VI, валентность II), меди (группа I, валентность II) и золота (группа I, валентность III). Гелий, неон и аргон не образуют химических соединений, т.е. они имеют нулевую валентность, хотя расположены в восьмой группе Периодической системы.

5. Формулы соединений

Формулы соединений составляются согласно валентности элементов; составление формул облегчается тем, что в названиях соединений валентность элемента переменной валентности указывается, например: оксид марганца (VII), оксид ванадия (V), гидроксид железа (III) и т.д.

В бинарных соединениях (бинарными называются соединения, содержащие атомы двух различных элементов) произведение числа атомов на валентность одного элемента должно быть равно произведению числа атомов на валентность другого элемента: оксид азота (I) N2O, оксид железа (III) Fe2O3, оксид марганца (VII) Mn2O7, оксид ванадия (V) V2O5, сульфид олова (IV) SnS2, сульфид мышьяка (V) As2S5 и т.д.

В последнее время понятие валентность стало распространяться на устойчивые группировки атомов – ионы. Например, анионы , , , , одновалентны, анионы , , , – двухвалентны, , – трехвалентны. Из этих примеров видно, что стехиометрическая валентность аниона равна его заряду. Точно также и валентность сложных катионов равна их заряду: , , , . Благодаря этому становится понятными формулы оснований и солей: гидроксид железа (III) Fe(OH)3, сульфат железа (II) FeSO4, сульфат железа (III) Fe2(SO4)3, нитрат железа (III) Fe(NO3)3, сульфат аммония (NH4)2SO4, нитрат диоксоурана (VI) UO2(NO3)2.

Наиболее сложно составлять формулы кислот, так как при отсутствии опыта кажется непонятным, чему равна валентность элемента, образующего кислоту. На самом деле всё не так сложно, как кажется вначале. Следует иметь в виду, что водород в кислотах, как и в других соединениях, одновалентен, кислород двухвалентен, а валентность центрального атома (кислотообразующего элемента) может быть максимальной и немаксимальной. Если в названии кислоты имеются суффиксы -н, -ов или -ев (серная, хромовая, кремневая), то это означает, что валентность кислотообразующего элемента – максимальная, а если суффикс -ист, -оват или -оватист, (сернистая, азотистая, хлорноватая, хлорноватистая) – то не максимальная.

В систематических международных названиях кислот валентность кислотообразующего элемента указывается: HIO4 – тетраоксоиодат (VII) водорода, H5IO6 – гексаоксоиодат (VII) водорода, H2S2O7 – гептаоксодисульфат (VI) водорода и т.д. Тривиальные (не систематические) названия кислот, которые обычно используются, а также названия их солей приводятся в упомянутом выше справочнике.

Формулы соединений подразделяются на простейшие и истинные. Простейшая (эмпирическая) формула отражает количественный состав соединения. Истинная (молекулярная) формула показывает реальный состав молекулы. Например, простейшие формулы пероксида водорода HO, оксида фосфора(V) P2O5, персульфата калия KSO4, а истинные – H2O2, P4O10, K2S2O8. Для большинства неорганических соединений простейшие формулы совпадают с истинными, чего нельзя сказать об органических соединениях, где расхождение между простейшей и истинной формулой вещества встречается часто. Например, простейшей формуле CH соответствуют истинные формулы ацетилена C2H2 и бензола C6H6.