
- •Волновая оптика. Квантовая физика. Статистическая физика.
- •Содержание
- •Введение
- •Изучение интерференции света с помощью бипризмы Френеля
- •Теоретическое введение
- •Метод Юнга.
- •Бипризма Френеля
- •Экспериментальная часть
- •Описание установки
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Изучение дифракции монохроматического лазерного излучения на дифракционной решётке
- •Теоретическое введение
- •Дифракция на щели
- •Дифракционная решетка
- •Экспериментальная часть
- •Экспериментальная установка
- •Методика измерений
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Проверка закона Малюса
- •Теоретическое введение
- •Экспериментальная часть
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Вращение плоскости поляризации
- •Теоретическое введение
- •Экспериментальная часть
- •Описание установки
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Изучение зависимости показателя преломления стеклянной призмы от длины волны
- •Теоретическое введение
- •Экспериментальная часть
- •Методика измерений
- •Описание установки
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Определение постоянной Стефана-Больцмана
- •Теоретическое введение
- •Законы теплового излучения
- •Экспериментальная часть
- •Описание установки
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 3-07 Изучение явления внешнего фотоэффекта
- •Теоретическое введение
- •Экспериментальная часть
- •Методика измерений
- •Экспериментальная установка
- •Порядок выполнения работы
- •Методика измерений
- •Экспериментальная установка
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Теоретическое введение
- •Экспериментальная часть
- •Описание экспериментальной установки
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Изучение опыта Франка и Герца.
- •Теоретическое введение
- •Экспериментальная часть
- •Экспериментальная установка
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Изучение поглощения света
- •Теоретическое введение
- •Экспериментальная часть
- •Экспериментальная установка
- •Порядок выполнения работы.
- •Контрольные вопросы
- •Элементы классической статистики.
- •Нормальный закон распределения (закон Гаусса)
- •Экспериментальная часть
- •Экспериментальная установка
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Определение коэффициента вязкости воздуха и средней длины свободного пробега молекул
- •Теоретическое введение
- •Экспериментальная часть
- •Методика измерений и описание установки
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Определение работы выхода электронов из металла
- •Теоретическое введение
- •Экспериментальная установка
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Определение коэффициента линейного теплового расширения
- •Теоретическое введение
- •Экспериментальная часть
- •Методика измерений и экспериментальная установка
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Исследование эффекта Зеебека
- •Теоретическое введение
- •Экспериментальная часть
- •Методика измерений Экспериментальная установка
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Теоретическое введение
- •Экспериментальная часть
- •Методика измерений
- •Экспериментальная установка
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Эффект Холла
- •Теоретическое введение
- •Методика измерений
- •Экспериментальная часть
- •Измерительная установка
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Изучение работы полупроводникового диода
- •Теоретическое введение
- •Экспериментальная часть
- •Экспериментальная установка и методика измерений
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Библиографический список
- •Волновая оптика. Квантовая физика. Статистическая физика
Нормальный закон распределения (закон Гаусса)
Существуют различные виды распределения случайных величин. Однако особое значение в теории вероятностей и в различных практических приложениях имеет нормальный закон распределения (закон Гаусса), характеризующийся тем, что для него среднее арифметическое значение случайной величины является также и наиболее вероятным. Закон Гаусса применяют, если выполняются следующие требования:
Величина может принимать непрерывный ряд значений.
При большом числе наблюдений отклонения от среднего одинаковой величины, но разного знака встречаются одинаково часто.
Большие отклонения от среднего встречаются реже, чем малые.
Плотность вероятности для нормального закона распределения описывается формулой:
,
(11.16)
где
– математическое ожидание случайной
величины, σ – среднее квадратическое
отклонение.
Кривая нормального закона распределения имеет колоколообразную форму (рис.11.1), симметричную относительно вертикальной прямой x= . С уменьшением σ кривая становится все более островершинной. Площадь, заключенная под всей кривой, согласно условию нормировки (11.12), равна единице.
Удобно
привести функцию Гаусса (11.16) к виду
(11.17), если ввести безразмерную переменную
:
.
(11.17)
Тогда
вероятность того, что х
отклоняется от
не больше, чем на Δх,
можно рассчитать так:
.
(11.18)
Результаты вычисления р по формуле (11.18) приведены в табл. 11.1.
Таблица 11.1
|
р |
|
р |
|
р |
0 |
0 |
0.4 |
0.31 |
2.0 |
0.95 |
0.1 |
0.08 |
0.5 |
0.38 |
2.5 |
0.988 |
0.2 |
0.16 |
1.0 |
0.68 |
3.0 |
0.997 |
0.3 |
0.24 |
1.5 |
0.87 |
4.0 |
0.99993 |
Очевидно, чем больше Δх, то есть чем больше ε, тем больше вероятность того, что случайная величина принимает значение в интервале от –Δх до +Δх. Так, например, вероятность того, что случайная величина принимает какое-либо значение в интервале от –σ до +σ (ε=1), из (11.11):
,
т
о
есть заштрихованная на рис.11.1 площадь
равна 0.68. Если ε=2, то вероятность того,
что случайная величина отклоняется от
среднего значения
(математического ожидания) не больше,
чем на Δх=2σ,
равна 95%, а отклонение случайной величины
на Δх=3σ
(ε=3) происходит с вероятностью 99.7%.
Закону Гаусса подчиняется распределение молекул газа по компонентам скоростей. Если газ находится в состоянии равновесия, в нем устанавливаются постоянные давление и температура. При этом молекулы газа движутся беспорядочно, сталкиваясь между собой и со стенками сосуда, беспрерывно меняя свою скорость. Несмотря на полную хаотичность молекулярных движений, их распределение по скоростям оказывается вполне определенным, если число молекул газа достаточно велико. На характер распределения не влияют ни столкновения между молекулами, ни внешние поля. Оно оказывается однозначным и единственно возможным.
Как бы ни изменялись скорости различных молекул, среднее значение квадрата скорости остается постоянным и равно
,
(11.19)
где
m0
– масса молекулы, Т
–
термодинамическая температура газа, k
– постоянная Больцмана. Введём функцию
распределения по компонентам скоростей:
(vx)dvx=
– доля молекул, проекции скорости
которых на ось ОХ
лежат в интервале от vх
до vх+dvх.
Хаотичность движения молекул позволяет
принять для проекции скорости vх
молекулы нормальный закон распределения.
Как показал Д.К.Максвелл, плотность
вероятности того, что молекула имеет
компоненту скорости vх,
равна:
,
(11.20)
Г
рафик
функции распределения по компонентам
скоростей изображен на рис.11.2.
Функция принимает максимальное значение при vx=0 и симметрична относительно оси ординат. Это значит, что среднее значение проекции скорости и ее наиболее вероятное значения равны нулю. Доля молекул, движущихся в данный момент времени в плоскости, перпендикулярной оси ОХ, максимальна.
Поскольку все направления движения молекул в пространстве равноправны, выражения для (vy) и (vz) аналогичны выражению (11.20). Вероятность того, что молекула имеет проекцию скорости, лежащую в интервале от vх до vх+dvх:
.
(11.21)