
- •Предмет и задачи курса пахт.
- •Основные свойства жидкости.
- •Виды и режимы движения жидкости. Критерий Рейнольдса. Характеристика турбулентного потока.
- •Уравнение постоянства расхода жидкости
- •5. Устройство и принцип действия поршневого насоса. Воздушные колпаки. Индикаторная диаграмма. Диаграмма подачи.
- •6 .Устройство и принцип действия центробежного насоса. Конструкция рабочего колеса
- •7.Сравнительная характеристика поршневых и центробежных насосов (по производительности, напору, кпд, равномерности подачи, сложности устройства)
- •8. Общая характеристика псевдоожиженного слоя.
- •10. Основные закономерности и применение псевдоожиженного («кипящего») слоя
- •11.Классификация центрифуг. Устройство и принцип действия осадит центрифуг
- •12. Аппаратура для циклонных процессов. (моно- и мультициклоны). Достоинства и недостатки
- •13. Разделение газовзвесей в электрическом поле.
- •14. Устройство и принцип действия барабанный вращающийся вакуум-фильтра
- •15. Перемешивание в жидкой среде
- •16.Сущность и основные понятия теплообмена.Теплоотдача и теплопередача.Тепловой поток.Основные тепловые процессы.
- •17.Теплопередача ч/з стенку.Основное ур-е теплопередачи.Коэффициенты теплопередачи и теплоотдачи.Средний темпер напор.
- •19.Классификация теплообменных аппаратов. Кожухотрубный теплообменный аппарат. Способы температурной компенсации.
- •20.Сущность массообмена. Движущая сила массопередачи.Основные массообменные процессы. Диффузионный поток. Основное ур-е массопередачи. Фазовое равновесие.
- •21.Сущность перегонки.Относительная летучесть компонентов.Законы Рауля и Дальтона.Превый закон Коновалова.
- •22.Схема ректификационной установки. Укрепляющая и исчерпывающая части колонны. Влияние флегмового числа на показание ректификации.
- •23.Разделение низкокипящих смесей. Экстрактивная Ректификация.Схема установки.
- •24.Азеотропная ректификация.Схема установки.Разделение смеси этанола с водой с добавлением бензола.
- •25.Сущность абсорбции.Закоы Генри и Дальтона.Зависимость растворимости газа в жидкости от темпер и давлении.
- •26.Устройство и прменение насадочных аппаратов.Гидродинамические рабочие режимы.Плюсы и минусы насадочных колонн.
- •27.Основные типы насадочных тел.Требования к насадкам. Размеры, эффективность и гидравлическое сопротивление насадочных тел.
- •28.Устройство и применение тарельчатых колонн.Классификация тарелок.Гидродинамические режимы тарелок.Плюсы и минусы тарельчатых клон.
- •29.Сущностьи применение экстракции.Схема установки.Коэффициенты распределения и разделения.
- •30.Сущность сушки.Способы сушки.Формы связи влаги с материалом.Сушильные агенты.Схема однозональной конвективной сушки.
16.Сущность и основные понятия теплообмена.Теплоотдача и теплопередача.Тепловой поток.Основные тепловые процессы.
Теплообмен-спонтанный(самопроизвольный) перенос тепловой энергии от более нагретого тела к менее нагретому. Возможен перенос тепловой энергии с более нзкого уровня на более высокий, но для этого необходимо подводить внешнюю энергию в систему (с помощью компрессора из электросети в холодильник). Движущая сила т/о-разность температур. Регулирование темпер один из способов управления ХАТП (повышение температуры м/о увеличивать скорость хим реакции). Регулируя темпер м/о сдвигать состояние равновесия обратимых процессов, таким образом изменяя темпер м/о влиять как на кинетику так и на термодинамику процессов. Известно 3 способа переноса тепловой энергии: конвективный (макроскопический), кондуктивный (микроскопический), лучистый (т/о излучением). При кондуктивном способе (теплопроводность) тепловая энергия переносится при непосредственном контакте. При конвективном-теплота переноситься макрообъемами системы (струйками жид или газа). При лучистом теплообмене теплота переноситься излучением в инфрокрасной области спектра (0,8-800мкм). Теплоотдача-т/о м/у поверхностью и тв стенкой, и жид или газовой средой. Теплопередача-т/о м/у двумя теплоносителями ч/з разделяющую их ТВ стенку (обычно Ме). Теспловой поток (общая скорость теплообмена или расходом тепла, или тепловая нагрузка): Q-количество тепла, которое переноситься ч/з поверхность F за 1с.
[Q]=[Дж/c]=[Вт]
Удельный тепловой поток (интенсивность т/о или теплонапряженность): q-тепловой поток ч/з 1м2 поверхности т/о.
q=Q/F, Вт/м2
к тепловым процессам относится нагрев, кипение, охлаждение, конденсация и выпаривание. Тепловые процессы играют важную роль при проведении хим, массообмен., биохим, физ-хим и другие процессы.
17.Теплопередача ч/з стенку.Основное ур-е теплопередачи.Коэффициенты теплопередачи и теплоотдачи.Средний темпер напор.
Пусть слева конденсир пар при темпер t1, а справа кипит жид при t2. Тогда δi-толщина I слоя стенки; λi-коэффициент теплопров материала i слоя; α1,2-коэффиц теплоотдачи; К-коэффиц теплопередачи; ∆tср-средний темпер напор (средняя разность темпер теплонасителей или средняя движ сила процесса теплопередачи); F-площадь теплопередающей поверхности.
Тепловой поток в этом случае м/о найти по сопротивлению: Q=K·F·(t1-t2)
Однако очень часто темпер теплоносителей изменяются в доль теплопередающей поверхности. Поэтому в это уравнение подставляем сред темпер напор (основное ур-е теплопередачи): Q=K·F·∆tср
α- колич-во тепла отдаваемое поверхности стенки в один квадратный метр среде (или в обратном направлении) за 1с при средней разности темпер поверхности стенки и среды в 1 градус.
К- колич-во тепла которая переносится от горячего к холодному ч/з 1 м2 поверхности теплопередачи за 1с при средней разности темпер теплоносит в 1 градус.
[α]=[K]=[Вт/м2·К]
1/К – термическое сопротивление теплопередаче;
1/α – термическое сопротивление теплоотдаче;
λ/δ – тепловая проводимость стенки;
δ/λ – термическое сопротивление стенки
Тепловой поток пропорционален поверности теплопередачи и среднему температ напору.
Средний темпера напор при противотоке значительно больше чем при прямотоке в теплоносителе. Средний темпер напор определяют ч/з разность темпер теплоносит на концах теплообменных аппаратов. Применяют или логарифмуют форму или среднеарифметическую формулу.
18.Греющие теплоносители.Охлаждающие теплоносители.
1.Наиболее доступный и экономичный греющий агент – насыщенный водяной пар, широко используемый благодаря большой теплоте конденсации, высокому коэффициенту теплоотдачи и постоянству температуры конденсации. Но нагревать паром выше 180-200˚С невыгодно из-за его высокого давления. Обычно нагревают глухим паром – через стенку, а иногда – острым (смешение пара с нагреваемой средой). Вода применяется обычно для нагрева не более 100˚С, используют воду под давлением. Вода уступает водяному пару по коэффициенту теплоотдачи и дает отложение (накипь). Для нагревания выше 200˚С применяются высокотемпературные теплоносители (перегретая вода, органические, ионные и жидкометаллические). Все перечисленные теплоносители – промежуточные. Прямыми источниками тепла, отдающими его промежуточным теплоносителям, являются дымовые газы (сжигание топлива) и электрическая энергия. Дымовым газам характерны низкие коэффициенты теплоотдачи (до 1000-1100˚С). Нагревание перегретой водой невыгодно (очень высокое давление) и применяется редко – до 350˚С. Температура нагрева органическими теплоносителями (до 400˚С) ограничивается их термическим разложением. Кроме того, они горючи и взрывоопасны (даутерн – смесь дифенила и дифенилоксида, минеральные масла, глицерин). Из ионных используются кремнийорганические (до 350˚С) соединения и нитрит-нитратная смесь (до 540˚С). Для жидкометаллических теплоносителей (Li, Na, K, Hg и т.д.) характерны высокие коэффициенты теплоотдачи, термостойкость. Но они коррозионноактивны. Нагревают ими до 800˚С и выше. В широком интервале температур можно нагревать электрическим током, например, в электропечах сопротивления. Но это сравнительно дорогой способ нагрева.
2.Для охлаждения до 10-30˚С используют воду и воздух. По сравнению с воздухом вода имеет большие значения теплоемкости и коэффициента теплоотдачи. Оборотную воду (отработанную воду теплообменников) охлаждают в градирнях, в которых навстречу распыляемой воде поднимается воздух. Вода используется для охлаждения как в поверхностных, так и в смесительных теплообменниках. Несмотря на низкий коэффициент теплоотдачи воздуха иногда воздушное охлаждение экономичнее водяного и находит все более широкое применение. Охладить до 0˚С можно введением в охлаждаемую среду льда. До более низких температур (ниже 0˚С) охлаждают в холодильных установках специальными хладоагентами (фреоны, аммиак, этан, пропан и т.д.).