
- •Основні положення теорії алгоритмів та її застосування
- •Введення до теорії алгоритмів
- •Загальні риси алгоритмів
- •Машина Поста
- •Машина т’юринга
- •Основи лямбда-числення та функціонального програмування
- •Теза Черча-т’юринга про алгоритмічну розв’язність задачі
- •Проблема розв’язності (зависання)
- •Алгоритмічно нерозв’язні задачі
- •Проблема відсутності загального методу вирішення задачі
- •Проблема інформаційної невизначеності задачі
- •Проблема логічної нерозв’язності задачі
- •Побудова машини т’юринга для обчислення деяких простих функцій
- •Введення до оцінки складності алгоритмів
- •Визначення порядку складності алгоритму
- •Оптимізація алгоритмів
- •Структури даних в алгоритмічній мові програмування
- •Визначення алгоритмічної мови програмування
- •Базові елементи сучасної мови програмування: типи даних; екземпляри даних; вирази; оператори; функції; класи.
- •Поняття типу даних
- •Прості типи: числові; символьні; логічні.
- •Тип даних рядок
- •Структуровані типи даних: масиви, записи, множини
- •Типи даних за значенням і за посиланням
- •Сумісність типів та перетворення між типами даних
- •Екземпляри даних: змінні, константи
- •Видимість даних
- •Управління ходом виконання та структурування програм в алгоритмічній мові програмування
- •Вирази, операнди та операції
- •Основні операції: арифметичні; логічні; бульові; з використанням рядків
- •Поняття оператора
- •Прості оператори: присвоювання; виклику функції
- •Оператори управління ходом виконання: розгалуження; вибору; цикли; переходу
- •Структурування програм: функції та класи
- •Параметри функцій: вхідні, результуючі.
- •Рекурсивні функції
- •Файли: текстові, бінарні
- •Алгоритми чисельних методів, апроксимації функцій, інтегрування та вирішення рівнянь з одним невідомим
- •Чисельні методи
- •Особливості вирішення задач чисельними методами, точність та коректність рішень
- •Апроксимації функцій: лінійна інтерполяція; інтерполяційний многочлен Ньютона.
- •Чисельне інтегрування: метод трапецій; метод Сімпсона; метод Сімпсона з оцінкою погрішності.
- •Вирішення рівнянь з одним невідомим: метод простих ітерацій; метод Ньютона; метод парабол.
- •Алгоритми вирішення системи лінійних рівнянь, пошуку екстремуму функції
- •Вирішення системи лінійних рівнянь методом Гауса
- •Пошук екстремуму функцій одної змінної: метод золотого перетину; метод парабол.
- •Пошук екстремуму функцій багатьох змінних: метод координатного спуску; метод найскорішого спуску.
- •Алгоритми обробки масивів
- •Визначення масивів
- •Операції над масивами
- •Упорядкування масивів: сортування вибором; сортування вставкою; бульбашкове сортування; сортування методом Шелла; метод швидкого сортування.
- •Вибір методів сортування
- •Пошук в упорядкованих масивах методом половинного поділу, інтерполяційним методом
- •Застосування індексів для пошуку у невпорядкованих даних
- •Алгоритми обробки даних на основі списків та дерев
- •Визначення списку
- •Види списків: незалежні списки, однозв’язані списки; двозв’язані списки; кільцеві списки; упорядковані списки
- •Основні операції над списками: включення елементу до списку; видалення елементу; перехід між елементами; ітератор для списку
- •Упорядкування та пошук в списках
- •Похідні структури даних: черга, стек, дек
- •Визначення дерева
- •Впорядковані дерева
- •Бінарні дерева
- •Основні операції з бінарними деревами: включення елементу; видалення елементу; обхід дерева
- •Балансування дерева
- •Алгоритми обробки текстових даних на основі регулярних виразів
- •Введення до теорії кінцевих автоматів
- •Графічне представлення кінцевих автоматів
- •Використання кінцевого автомату: синтаксичний аналіз.
- •Реалізація синтаксичного аналізу файлу з розділяючими комами
- •Детерміновані та недетерміновані кінцеві автомати
- •Регулярні вирази
- •Форма Бекуса-Наура для запису регулярних виразів
- •Синтаксичний аналіз регулярних виразів
- •Компіляція регулярних виразів
- •Інструменти для спрощення роботи з регулярними виразами
- •Зіставлення рядків з регулярними виразами.
- •Алгоритми систем числення
- •Введення до систем числення
- •Двійкова система числення
- •Шістнадцяткова система числення
- •Системи числення з нетрадиційними основами
- •Перетворення між різними системами числення
- •Арифметика чисел з плаваючою комою
- •Точність операцій з плаваючою комою
- •Арифметика великих чисел
- •Алгоритми криптографії та хешування
- •Значення випадкових чисел у програмуванні
- •Алгоритми генерації рівномірно розподілених псевдовипадкових чисел
- •Перевірка якості випадкових чисел
- •Кодування з виправленням помилок
- •Стиснення даних
- •Стиснення даних зі словником
- •Алгоритм стиснення даних Лемпела-Зіва
- •Введення до криптографії
- •Елементи теорії порівнянь
- •Шифрування за допомогою випадкових чисел
- •Створення таємного ключа по Діффі-Хеллману
- •Система rsa
- •Алгоритми цифрового підпису
- •Введення до хешування
- •Функції хешування
- •Проста функція хешування рядків
- •Функції хешування з використанням рандомізації
- •Вирішення конфліктів за допомогою лінійного зондування
- •Псевдовипадкове зондування
- •Подвійне хешування
Системи числення з нетрадиційними основами
В людській історії існувала велика кількість різноманітних систем числення.
Слов’янська система числення – використовувала літери слов’янської абетки, за допомогою яких можна було представляти числа.
Трійкова система – -1, 0, 1; N, O, P.
Трійкова система – дуже зручний аналог двійкової при здійсненні арифметичних операцій, була реалізована в деяких комп’ютерах, наприклад, в радянському комп’тері «Сетунь», який був побудований в кінці 1950-х рр. На рис. 10.2 представлена таблиця додавання у трійковій системі.
Рисунок 10.2 – Таблиця додавання у трійковій системі
Чому саме десяткова система стала популярною? Підказка: у племенах майя використовувалася двадцяткова система.
Перетворення між різними системами числення
Якщо основа нової системи числення дорівнює деякому степеню старої системи числення, то алгоритм переводу дуже простий: потрібно згрупувати справа наліво розряди в кількості, що дорівнює показнику степеня і замінити цю групу розрядів відповідним символом нової системи числення. Цим алгоритмом зручно користуватися коли потрібно перевести число з двійкової системи числення у вісімкову або шістнадцяткову. Наприклад, 101102=10 110=268, 10111002=101 1100=5C8
Перетворення навпаки відбувається за зворотнім правилом: один символ старої системи числення заміняється групою розрядів нової системи числення, в кількості рівній показнику степеня нової системи числення. Наприклад, 4728=100 111 010=1001110102, B516=1011 0101=101101012
Як бачимо, якщо основа однієї системи числення дорівнює деякому степеню іншої, то перевід тривіальний. У протилежному випадкові користуються правилами переведення числа з однієї позиційної системи числення в іншу (найчастіше для переведення із двійкової, вісімкової та шістнадцяткової систем числення у десяткову, і навпаки).
Розглянемо загальні правила переведення.
1. Для переведення чисел із системи числення з основою p в систему числення з основою q, використовуючи арифметику нової системи числення з основою q, потрібно записати коефіцієнти розкладу, основи степенів і показники степенів у системі з основою q і виконати всі дії в цій самій системі. Очевидно, що це правило зручне при переведенні до десяткової системи числення.
Наприклад:
з шістнадцяткової в десяткову:
92C816=9*10163+2*10162+C*10161+8*10160= 9*16103+2*16102+12*16101+8*16100=37576
з вісімкової в десяткову:
7358=7*1082+3*1081+5*1080= 7*8102+3*8101+5*8100=47710
з двійкової в десяткову:
1101001012=1*1028 + 1*1027 + 0*1026 + 1*1025 + 0*1024 + 0*1023 + 1*1022 + 0*1021 + 1*1020= 1*2108 + 1*2107 + 0*2106 + 1*2105 + 0*2104+0*2103+1*2102+0*2101+ 1*2100=42110
2. Для переведення чисел із системи числення з основою p в систему числення з основою q з використанням арифметики старої системи числення з основою p потрібно:
для переведення цілої частини:
послідовно число, записане в системі основою p ділити на основу нової системи числення, виділяючи остачі. Останні записані у зворотному порядку, будуть утворювати число в новій системі числення;
для переведення дробової частини:
послідовно дробову частину множити на основу нової системи числення, виділяючи цілі частини, які й будуть утворювати запис дробової частини числа в новій системі числення.
Цим самим правилом зручно користуватися в разі переведення з десяткової системи числення, тому що її арифметика для нас звичніша.
Приклади: 999,3510=1111100111,010112
для цілої частини:
для дробової частини: