
- •Основні положення теорії алгоритмів та її застосування
- •Введення до теорії алгоритмів
- •Загальні риси алгоритмів
- •Машина Поста
- •Машина т’юринга
- •Основи лямбда-числення та функціонального програмування
- •Теза Черча-т’юринга про алгоритмічну розв’язність задачі
- •Проблема розв’язності (зависання)
- •Алгоритмічно нерозв’язні задачі
- •Проблема відсутності загального методу вирішення задачі
- •Проблема інформаційної невизначеності задачі
- •Проблема логічної нерозв’язності задачі
- •Побудова машини т’юринга для обчислення деяких простих функцій
- •Введення до оцінки складності алгоритмів
- •Визначення порядку складності алгоритму
- •Оптимізація алгоритмів
- •Структури даних в алгоритмічній мові програмування
- •Визначення алгоритмічної мови програмування
- •Базові елементи сучасної мови програмування: типи даних; екземпляри даних; вирази; оператори; функції; класи.
- •Поняття типу даних
- •Прості типи: числові; символьні; логічні.
- •Тип даних рядок
- •Структуровані типи даних: масиви, записи, множини
- •Типи даних за значенням і за посиланням
- •Сумісність типів та перетворення між типами даних
- •Екземпляри даних: змінні, константи
- •Видимість даних
- •Управління ходом виконання та структурування програм в алгоритмічній мові програмування
- •Вирази, операнди та операції
- •Основні операції: арифметичні; логічні; бульові; з використанням рядків
- •Поняття оператора
- •Прості оператори: присвоювання; виклику функції
- •Оператори управління ходом виконання: розгалуження; вибору; цикли; переходу
- •Структурування програм: функції та класи
- •Параметри функцій: вхідні, результуючі.
- •Рекурсивні функції
- •Файли: текстові, бінарні
- •Алгоритми чисельних методів, апроксимації функцій, інтегрування та вирішення рівнянь з одним невідомим
- •Чисельні методи
- •Особливості вирішення задач чисельними методами, точність та коректність рішень
- •Апроксимації функцій: лінійна інтерполяція; інтерполяційний многочлен Ньютона.
- •Чисельне інтегрування: метод трапецій; метод Сімпсона; метод Сімпсона з оцінкою погрішності.
- •Вирішення рівнянь з одним невідомим: метод простих ітерацій; метод Ньютона; метод парабол.
- •Алгоритми вирішення системи лінійних рівнянь, пошуку екстремуму функції
- •Вирішення системи лінійних рівнянь методом Гауса
- •Пошук екстремуму функцій одної змінної: метод золотого перетину; метод парабол.
- •Пошук екстремуму функцій багатьох змінних: метод координатного спуску; метод найскорішого спуску.
- •Алгоритми обробки масивів
- •Визначення масивів
- •Операції над масивами
- •Упорядкування масивів: сортування вибором; сортування вставкою; бульбашкове сортування; сортування методом Шелла; метод швидкого сортування.
- •Вибір методів сортування
- •Пошук в упорядкованих масивах методом половинного поділу, інтерполяційним методом
- •Застосування індексів для пошуку у невпорядкованих даних
- •Алгоритми обробки даних на основі списків та дерев
- •Визначення списку
- •Види списків: незалежні списки, однозв’язані списки; двозв’язані списки; кільцеві списки; упорядковані списки
- •Основні операції над списками: включення елементу до списку; видалення елементу; перехід між елементами; ітератор для списку
- •Упорядкування та пошук в списках
- •Похідні структури даних: черга, стек, дек
- •Визначення дерева
- •Впорядковані дерева
- •Бінарні дерева
- •Основні операції з бінарними деревами: включення елементу; видалення елементу; обхід дерева
- •Балансування дерева
- •Алгоритми обробки текстових даних на основі регулярних виразів
- •Введення до теорії кінцевих автоматів
- •Графічне представлення кінцевих автоматів
- •Використання кінцевого автомату: синтаксичний аналіз.
- •Реалізація синтаксичного аналізу файлу з розділяючими комами
- •Детерміновані та недетерміновані кінцеві автомати
- •Регулярні вирази
- •Форма Бекуса-Наура для запису регулярних виразів
- •Синтаксичний аналіз регулярних виразів
- •Компіляція регулярних виразів
- •Інструменти для спрощення роботи з регулярними виразами
- •Зіставлення рядків з регулярними виразами.
- •Алгоритми систем числення
- •Введення до систем числення
- •Двійкова система числення
- •Шістнадцяткова система числення
- •Системи числення з нетрадиційними основами
- •Перетворення між різними системами числення
- •Арифметика чисел з плаваючою комою
- •Точність операцій з плаваючою комою
- •Арифметика великих чисел
- •Алгоритми криптографії та хешування
- •Значення випадкових чисел у програмуванні
- •Алгоритми генерації рівномірно розподілених псевдовипадкових чисел
- •Перевірка якості випадкових чисел
- •Кодування з виправленням помилок
- •Стиснення даних
- •Стиснення даних зі словником
- •Алгоритм стиснення даних Лемпела-Зіва
- •Введення до криптографії
- •Елементи теорії порівнянь
- •Шифрування за допомогою випадкових чисел
- •Створення таємного ключа по Діффі-Хеллману
- •Система rsa
- •Алгоритми цифрового підпису
- •Введення до хешування
- •Функції хешування
- •Проста функція хешування рядків
- •Функції хешування з використанням рандомізації
- •Вирішення конфліктів за допомогою лінійного зондування
- •Псевдовипадкове зондування
- •Подвійне хешування
Форма Бекуса-Наура для запису регулярних виразів
Форма Бекуса-Наура (БНФ) – формальна система для опису синтаксису.
Часто використовується для запису регулярних виразів. Приклад:
Синтаксичний аналіз регулярних виразів
Використання регулярних виразів здійснюється у три етапи: синтаксичний аналіз; компіляція; використання для перевірки відповідності рядкам вхідних даних.
Синтаксичний аналіз – процес перевірки відповідності наведеного синтаксису граматичним правилам.
Процес синтаксичного аналізу також має назву “парсинг” (parsing). Для синтаксичного аналізу регулярних виразів, як правило, будується нисхідний синтаксичний аналізатор (top down parser).
Компіляція регулярних виразів
Компіляція регулярного виразу – перетворення його на недетермінований кінцевий автомат.
Приклад компіляці для виразу “(a|b)*bc” (повторення нуль чи більше раз символу а чи b, за якими йдуть символи b та c).
Інструменти для спрощення роботи з регулярними виразами
Regulator - безкоштовний інструмент для побудови та перевірки регулярних виразів
Рисунок 8.4 – Графічний інтерфейс програми Regulator
Зіставлення рядків з регулярними виразами.
В процесі зіставлення рядку з регулярним виразом відбувається виконання скомпільованого кінцевого автомату над вхідним рядком.
Приклад реалізації регулярного виразу в C# (пошук у файлі коректних адрес електронної пошти).
12. Використання регулярних виразів для автоматизації типових задач.
Приклад регулярного виразу для заміни дати формату мм/дд/рр на формат дд/мм/рр
using System;
using System.Globalization;
using System.Text.RegularExpressions;
public class Class1
{
public static void Main()
{
string dateString = DateTime.Today.ToString("d",
DateTimeFormatInfo.InvariantInfo);
string resultString = MDYToDMY(dateString);
Console.WriteLine("Converted {0} to {1}.", dateString, resultString);
}
static string MDYToDMY(string input)
{
return Regex.Replace(input,
"\\b(?<month>\\d{1,2})/(?<day>\\d{1,2})/(?<year>\\d{2,4})\\b",
"${day}-${month}-${year}");
}
}
Приклад видалення всіх символів із рядку, що не є буквенно-цифровими за винятком символів "@", "-" та ".“
using System;
using System.Text.RegularExpressions;
public class Example{
static string CleanInput(string strIn)
{
// Replace invalid characters with empty strings.
return Regex.Replace(strIn, @"[^\w\.@-]", "");
}
}
Алгоритми систем числення
Перелік питань:
Введення до систем числення.
Двійкова система числення.
Шістьнадцяткова система числення.
Системи числення з нетрадиційними основами.
Перетворення між різними системами числення.
Арифметика чисел з плаваючою комою.
Точність операцій з плаваючою комою.
Арифметика великих чисел.
Введення до систем числення
Система числення - сукупність прийомів та правил найменування й позначення чисел.
Позиційна - система числення, в якій значення кожної цифри залежить від місця в послідовності цифр у записі числа.
Непозиційна - система числення, в якій значення кожної цифри в довільному місці послідовності цифр, яка означає запис числа, не змінюється.
Щоб визначити число, недостатньо знати тип і алфавіт системи числення. Для цього необхідно ще додати правила, які дають змогу за значеннями цифр встановити значення числа.
Найпростішим способом запису натурального числа є зображення його за допомогою відповідної кількості паличок або рисочок. Таким способом можна користуватися для невеликих чисел.
Наступним кроком було винайдення спеціальних символів (цифр). У непозиційній системі кожен знак у запису незалежно від місця означає одне й те саме число. Добре відомим прикладом непозиційної системи числення є римська система, в якій роль цифр відіграють букви алфавіту: І - один, V - п'ять, Х - десять, С - сто, Z - п'ятдесят, D - п'ятсот, М - тисяча. Наприклад, 324 = СССХХІV. У непозиційній системі числення незручно й складно виконувати арифметичні операції.
Поширений приклад непозиційної системи числення – римська система числення, де замість цифр використовуються латинські букви (таблиця 10.1).
Таблиця 10.1 – Цифри римської системи числення
Римська цифра |
Десяткове значення |
I |
1 |
V |
5 |
X |
10 |
L |
50 |
C |
100 |
D |
500 |
M |
1000 |
Наприклад, VII = 5 + 1 + 1 = 7. Тут символи V і I означають 5 і 1, відповідно, незалежно від місця їх у числі.
Загальноприйнятою в сучасному світі є десяткова позиційна система числення, яка з Індії через арабські країни прийшла в Європу. Основою цієї системи є число десять. Основою системи числення називається число, яке означає, у скільки разів одиниця наступного розрядку більше за одиницю попереднього.
Загальновживана форма запису числа є насправді не що інше, як скорочена форма запису розкладу за степенями основи системи числення, наприклад:
130678=1*105+3*104+0*103+6*102+7*101+8
Тут 10 є основою системи числення, а показник степеня - це номер позиції цифри в записі числа (нумерація ведеться зліва на право, починаючи з нуля). Арифметичні операції у цій системі виконують за правилами, запропонованими ще в середньовіччі. Наприклад, додаючи два багатозначних числа, застосовуємо правило додавання стовпчиком. При цьому все зводиться до додавання однозначних чисел.